What’s up with the W boson mass?
The CDF experiment at Fermilab measured the mass of the W boson and came up with an answer that no one expected.
501 - 510 of 2124 results
The CDF experiment at Fermilab measured the mass of the W boson and came up with an answer that no one expected.
From Nature Italy May 20, 2022: CDF co-spokesperson Giorgio Chiarelli tells the story of how Italy contributed to the measurement of the W boson mass, opening a door on new physics. For more than 10 years after the Tevatron detector at Fermilab produced the last crashes between protons and antiprotons, the collaboration announced the most precise measure of the W boson mass ever achieved.
Black physicists say efforts to recruit and retain more Black students must concentrate on challenges they face at both Historically Black Colleges and Universities and Primarily White Institutions.
From the Nature Briefing, May 13, 2022: Based on data recorded with the CDF II detector at Fermilab between 2002 and 2011 at the Tevatron, the collaboration reconstructed more than 4 million W boson candidates through their decays into an electron or muon accompanied by the respective neutrino. The CDF Collaboration stated their result “suggests the possibility of improvements to the standard model calculation or of extensions to it”.
A pilot program, designed in part by educators at Sanford Underground Research Facility, is introducing computational thinking into elementary school curricula.
From USA News Hub, May 10,2022: The Dark Energy Camera on the Víctor M. Blanco 4-meter Telescope, one of the most powerful cameras in the world just photographed two distant galaxies entwined in what’s been described as a “galactic ballet.” Read more about these amazing new images captured by the DECamera developed and tested at Fermilab.
From The Conversation, May 6, 2021: A recent series of precise measurements in the LHCb, Muon g-2 and CDF experiments have threatened to shake up physics. Now, the LHC is gearing up to run at higher energy and intensity than ever before to make very precise measurements that will test the predictions of theories by looking for deviations from the Standard Model.
From the Finding Genius Podcast, May 4, 2022: The Muon g-2 project led by Fermilab holds the potential to reveal some of the universe’s inner workings. Chris Polly joins the Finding Genius Podcast to explain his work on the Muon g-2 project, how the experiment studies muons and what the results mean relative to the Standard Model of particle physics.
From NBC News, May 4, 2022: A new research initiative that includes Fermilab scientist Alan Bross plans to scan Egypt’s Great Pyramid of Giza using energetic particles from space. The new device is a high-powered telescope to map the Great Pyramid’s internal makeup from all angles and could help scientists “see” inside the ancient structure to glean new details about its mysterious inner chambers.
Neglected theories will wilt and wither but can bloom again with enough attention.