Symmetry

271 - 280 of 609 results

With open data, scientists share their work

    In science, making data open means making available, free of charge, the observations or other information collected in a scientific study for the purpose of allowing other researchers to examine it for themselves, either to verify it or to conduct new analyses. There are barriers to making scientific data open, but doing so has already contributed to scientific progress.

    Crossing fields

      Karen Uhlenbeck’s pioneering work marries math with physics. Her work in the field of mathematical physics has earned her numerous honors and awards, including the 1988 Noether Lecture award, the National Medal of Science in 2001, and the 2007 Steele Prize for a Seminal Contribution to Mathematical Research from the American Mathematical Society. A MacArthur fellow, she is also the first woman to win the Abel Prize in its 17-year history.

      Testing DAMA

        An Italian experiment has a 20-year signal of what could be dark matter—and scientists are embarking on their most promising efforts yet to confirm or refute its results. For more than two decades, DAMA has observed a regularly changing signal that its operators think comes from our planet’s movements through the “halo” of dark matter suffusing the Milky Way galaxy.

        Breakthrough Prize awarded to architects of supergravity

        Our world is governed by general relativity, which sees gravity as the effects of massive objects warping space-time. The world of particle physics, on the other hand, envisions all forces as mediated by force-carrying particles — and ignores gravity entirely. This year’s Breakthrough Prize in Fundamental Physics was awarded to three theorists who proposed a way to marry these contradictory descriptions: with a theory called “supergravity.”

        Gravity’s waterfall

        In recent years, scientists have found ways to study black holes, listening to the gravitational waves they unleash when they collide and even creating an image of one by combining information from radio telescopes around the world. But our knowledge of black holes remains limited. So scientists are figuring out how to make do with substitutes — analogs to black holes that may hold answers to mysteries about gravity and quantum mechanics.

        Massless particles can’t be stopped

        Imagine a particle. What comes to mind? If you aren’t a theoretical particle physicist, chances are you picture a tiny ball, bobbing in space. But that’s not quite correct. One way to prove it: Try to imagine that tiny ball as a particle with no mass. If a particle has no mass, how can it exist?