Accelerator magnets — how do they work? Depending on the number of poles a magnet has, it bends, shapes or shores up the stability of particle beams as they shoot at velocities close to the speed of light. Experts design magnets so they can wield the beam in just the right way to yield the physics they’re after. Here’s your primer on particle accelerator magnets.
accelerator technology
Fermilab, Brookhaven National Laboratory and Lawrence Berkeley National Laboratory have achieved a milestone in magnet technology. Earlier this year, their new magnet reached the highest field strength ever recorded for an accelerator focusing magnet. It will also be the first niobium-tin quadrupole magnet to operate in a particle accelerator — in this case, the future High-Luminosity Large Hadron Collider at CERN.
From HPC Wire, March 2, 2020: Fermilab scientists are collaborating with researchers at Argonne, where they’ll run simulations on high-performance computers. Their work will help determine whether instruments called superconducting radio-frequency cavities, also used in particle accelerators, can solve one of the biggest problems facing the successful development of a quantum computer: the decoherence of qubits.
DOE has awarded a $1.9 million grant to Northern Illinois University and the Illinois Institute of Technology for the training of next-generation workers in accelerator science and technology. The program will cover student tuition costs for two years and fund paid research assistantships at Fermilab and Argonne. Physics professors Michael Syphers and Philippe Piot, both experts in particle accelerator research and technology, are leading the effort at NIU.
From University of Maryland, Oct. 17, 2019: Fermilab scientist Charles Thangaraj received the 40 under 40 Chicago Scientists award at the 2nd Annual Halo Awards on Oct. 12 at the Museum of Science and Industry in Chicago. The Halo Awards ceremony recognizes scientists for their dedication to translating research into real-world applications that meaningfully impact people’s lives.
For the first time, a team at Fermilab has cooled and operated a superconducting radio-frequency cavity — a crucial component of superconducting particle accelerators — using cryogenic refrigerators, breaking the tradition of cooling cavities by immersing them in a bath of liquid helium. The demonstration is a major breakthrough in the effort to develop lean, compact accelerators for medicine, the environment and industry.
From Gizmodo, Sept. 13, 2019: Physicists at Fermilab have produced and tested a powerful magnet of the sort that could appear in the next generation of particle colliders. Fermilab scientist Alexander Zlobin talks with Gizmodo about the lab’s recent milestone achievement in reaching 14.1 teslas for a steering magnet.