When two heavy ions collide inside a particle accelerator, they produce a near-perfect fluid through which an assortment of fundamental particles swim. For scientists to accurately simulate even a tiny drop of this hot and dense subatomic brew with a classical computer, it would take longer than the age of the universe. Scientists show how quantum computing could be a game-changer in our understanding of quantum processes.

Scientists at CERN have found a way to learn more about the interior of neutron stars using the Large Hadron Collider. Researchers on the ALICE experiment are uncovering the properties of elusive hyperon particles hypothesized to be found inside neutron stars.

View of Large Hadron Collider

During the last four years, LHC scientists have filled in gaps in our knowledge and tested the boundaries of the Standard Model. Since the start of Run II in March 2015, they’ve recorded an incredible amount of data —five times more than the LHC produced in Run I. The accelerator produced approximately 16 million billion proton-proton collisions — about one collision for every ant currently living on Earth.