magnet

A super-precise experiment at Fermilab is carefully analyzing every detail of the muon’s magnetic moment. The Fermilab Muon g-2 collaboration has announced it will present its first result at 10 a.m. CDT on April 7.

From Berkeley Lab, Feb. 17, 2021: Fermilab is part of a team of national labs that designed, built and fully tested a prototype magnet for today’s and tomorrow’s light sources. These light sources let scientists see things once thought impossible. They can use these visions to create more durable materials, build more efficient batteries and computers, and learn more about the natural world.

The U.S. Department of Energy has given the U.S. High-Luminosity Large Hadron Collider Accelerator Upgrade Project approval to move full-speed-ahead in building and delivering components for the HL-LHC, specifically, cutting-edge magnets and accelerator cavities that will enable more rapid-fire collisions at the collider. The collider upgrades will allow physicists to study particles such as the Higgs boson in greater detail and reveal rare new physics phenomena. The U.S. collaborators on the project may now move into production mode.

Later this decade, the Large Hadron Collider will be upgraded to the High-Luminosity LHC. What does “luminosity” mean in particle physics, and why measure it instead of collisions?

In December a new tool — the blue structures seen here — co-developed by CERN and Fermilab to assemble the new triplet magnets for the HL-LHC was installed and then tested with a dummy magnet at CERN. Fermilab will do the same by the end of January. CERN's Vittorio Parma seems to be pleased with the setup. accelerator, CERN, HL-LHC, accelerator technology, magnet Photo: Mike Struik, CERN

In December a new tool — the blue structures seen here — co-developed by CERN and Fermilab to assemble the new triplet magnets for the HL-LHC was installed and then tested with a dummy magnet at CERN. Fermilab will do the same by the end of January. CERN’s Vittorio Parma seems to be pleased with the setup.

From CERN Courier, Jan. 13, 2021: The US LHC Accelerator Upgrade Project, led by Fermilab scientist Giorgio Apollinari, is now entering the production phase in the construction of magnets for the upcoming High-Luminosity LHC, an upgrade of the current Large Hadron Collider. U.S. labs are building magnets that will focus beams near the ATLAS and CMS particle detectors.

This shows the octupole channel in the Fermilab Integrable Optics Test Accelerator, or IOTA, in November. A set of 17 independently powered octupole magnets is installed in one of the straight sections of IOTA. The channel is used for experiments on nonlinear integrable optics and on the physics of dynamical systems. These experiments study new ways to stabilize high-intensity beams for research at the frontiers of particle physics. IOTA, accelerator, accelerator science, accelerator technology, magnet Photo: Giulio Stancari

This shows the octupole channel in the Fermilab Integrable Optics Test Accelerator, or IOTA, in November. A set of 17 independently powered octupole magnets is installed in one of the straight sections of IOTA. The channel is used for experiments on nonlinear integrable optics and on the physics of dynamical systems. These experiments study new ways to stabilize high-intensity beams for research at the frontiers of particle physics.