Muon g-2

The 50-foot-wide superconducting electromagnet at the center of the experiment saw its first beam of muon particles from Fermilab’s accelerators, kicking off a three-year effort to measure just what happens to those particles when placed in a stunningly precise magnetic field. The answer could rewrite scientists’ picture of the universe and how it works.

From Nature, April 11, 2017: Fermilab’s Muon g-2 experiment will measure the muon’s magnetic moment with unparalleled precision, perhaps revealing unknown virtual particles.

It survived a month-long journey over 3,200 miles, and now the delicate and complex electromagnet is well on its way to exploring the unknown. The Muon g-2 ring has successfully cooled down to operating temperature and powered up, proving that even after a decade of inactivity, it remains a vital and viable scientific instrument.

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy’s Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, New York. This week, the magnet took the final few steps of that journey, moving across the Fermilab site and into the new building that now houses it.

For the past month, a 50-foot-wide circular electromagnet has been on a fantastic journey between two U.S. Department of Energy national labs: Brookhaven National Laboratory in New York and Fermi National Accelerator Laboratory in Illinois. On Friday, July 26, that voyage is expected to conclude. Fermilab is planning a party to celebrate the ring’s safe arrival, and everyone’s invited.