neutrino

The Mu2e experiment at Fermilab will look for a never-before-seen subatomic phenomenon that, if observed, would transform our understanding of elementary particles: the direct conversion of a muon into an electron. An international collaboration of over 200 scientists is building the Mu2e precision particle detector that will hunt for new physics beyond the Standard Model.

From World Nuclear News, December 7, 2021: A neutrino detection kit has been installed in the containment of Argentina’s Atucha 2 reactor in support of a US-Argentine experiment to learn more about the mysterious particles. Scientists of the vIOLETTA Project are using sensitive Skipper CCD equipment designed and prepared by Fermilab and Berkeley labs. It will be able to detect interactions between neutrinos and a silicon matrix. The experimental arrangement will give them insights on neutrinos at previously unexplored low energy ranges.

From Physics World, December 1, 2021: Researchers say there are gaps in the theory of neutrino-nucleus interactions and that improving this theory is crucial if next-generation neutrino detectors such as the Deep Underground Neutrino Experiment (DUNE) in the U.S. and Hyper-Kamiokande in Japan are to realize their full potential.

From Universe Today, November 5, 2021: Neutrinos might make up a small portion of dark matter, but most dark matter must be something else. Because neutrinos are so close to satisfying the properties of dark matter, some scientists have argued dark matter might be a yet undiscovered variety known as sterile neutrinos.What did Fermilab’s newest experiment MicroBooNE see?

From Le Scienze (France), November 4, 2021: The preliminary analysis of three years of data from the MicroBooNE experiment show no signs of the existence of a fourth type of neutrino. The standard model of particle physics remains confirmed but it has not excluded clues to exotic physical phenomena may emerge.

From Scientific American, November 4, 2021: Physicists have wondered if neutrino particles come in a mysterious fourth variety. Now new experimental findings complicate the question. Physicists have wondered if neutrino particles come in a mysterious fourth variety. Now new experimental findings complicate the question.

From Scientific American, November 4, 2021: Physicists have wondered if neutrino particles come in a mysterious fourth variety. Now new experimental findings complicate the question. Physicists have wondered if neutrino particles come in a mysterious fourth variety. The MicroBooNE experiment findings announced last week by Fermilab heightened the mystery of why too many particles showed up in a detector during an experiment on the 1990s.