quantum information science

71 - 80 of 106 results

Chicago Quantum Profile: Farah Fahim

    From the Chicago Quantum Exchange, May 18, 2020: Farah Fahim is the deputy head of quantum science at Fermi National Accelerator Laboratory. For much of her career, she developed low-noise, high-speed reconfigurable pixel detectors for high-energy physics and photon science. She recently pivoted to control and readout electronics for quantum systems, and says, “The future is bright.”

    Partnership between the University of Chicago and Argonne National Laboratory leads to new methods of quantum communication

      From The Chicago Maroon, March 22, 2020: The University of Chicago, working with scientists from Argonne National Laboratory, has developed a new fiber-optic quantum loop to expand quantum communication experiments. Along with the UChicago quantum loop, Argonne is working with Fermilab to plan and develop a similar two-way quantum link network.

      Caltech and JPL launch hybrid high rate quantum communication systems

        From EurekAlert!, March 6, 2020: Caltech and JPL have designed a practical, high-rate, high-fidelity quantum communication system over fiber and free space. The team is on track to deploy, commission and demonstrate both concepts, including a free-space, municipal quantum link between JPL and Caltech, in 2020-21. They will also establish a space-based quantum optical connection between the Caltech-JPL quantum network and quantum networks in the Midwest, including Fermilab’s FQNET and IEQNET, together with Argonne National Laboratory.

        Particle accelerator technology could solve one of the most vexing problems in building quantum computers

          From HPC Wire, March 2, 2020: Fermilab scientists are collaborating with researchers at Argonne, where they’ll run simulations on high-performance computers. Their work will help determine whether instruments called superconducting radio-frequency cavities, also used in particle accelerators, can solve one of the biggest problems facing the successful development of a quantum computer: the decoherence of qubits.

          Particle accelerator technology could solve one of the most vexing problems in building quantum computers

          One of the most difficult problems to overcome in developing a quantum computer is finding a way to maintain the lifespan of information held in quantum bits, called qubits. Researchers at Fermilab and Argonne National Laboratory are working to determine whether devices used in particle accelerators can help solve the problem. The team will run simulations on high-performance computers that will enable them to predict the lifespan of information held within these qubits using smaller versions of these devices, taking us one step closer to the age of quantum computing.

          Shaping the technology transforming our society

          In November, the Chicago Quantum Exchange held a workshop about ethics and societal impacts of artificial intelligence and quantum computing technologies. Participants from a wide variety of academic backgrounds, from physicists to sociologists, discussed the implications of technology on society and vice versa and identified critical steps scientists need to take so technology is developed and implemented ethically and responsibly.

          Fermilab launches new institute for quantum science

          Today Fermilab announces the launch of the Fermilab Quantum Institute, which will bring all of the lab’s quantum science and technology projects under one umbrella. This new enterprise signals Fermilab’s commitment to this burgeoning field, working alongside scientific institutions and industry partners from around the world. The laboratory will use particle physics expertise to kick-start quantum technology for computing, sensors, simulations and communication.

          DOE awards Fermilab and partners $3.2 million for Illinois quantum network

          Researchers are wielding quantum physics, technologies and expertise to develop a proposed Illinois Express Quantum Network, which would stretch between Fermilab and Northwestern University’s Evanston and Chicago campuses. The metropolitan-scale, quantum-classical hybrid design combines quantum technologies with existing classical networks to create a multinode system for multiple users.