From Diario Libre, Feb. 24, 2021: Fermilab and partners achieve quantum teleportation over 22 kilometers. Further development of quantum teleportation would allow the development of a high-fidelity and high-speed quantum internet.
In the news
From Forbes, Feb. 25, 2021: Fermilab scientist Don Lincoln writes about a supercomputer at the National Astronomical Observatory of Japan that explores the history of the universe by simulating over 4,000 universes.
From Los Alamos Laboratory News, Feb. 24, 2021: The E-906/SeaQuest experiment, hosted by Fermilab, has produced results that are the opposite of what had previously been understood about proton structure and the dynamics of strong interacting antiquarks and gluons.
From Bloomberg Quicktake, Feb. 23. 2021: In this video, Fermilab scientist Don Lincoln adds his perspective on time dilation and how it affects time and gravity. This precise measurement of time will allow scientists to measure plates, large movements deep below earth’s surface and climate change.
Protons are built from three quarks — two “up” quarks and one “down” quark. But they also contain a roiling sea of transient quarks and antiquarks that fluctuate into existence before swiftly annihilating one another. At the Fermilab-hosted SeaQuest experiment, researchers report that that lopsidedness persists in a realm of previously unexplored quark momenta.
From Jornal Da Unicamp, Feb. 18, 2021: Fermilab’s Deep Underground Neutrino Experiment is the largest study ever done on the subject in the world and will investigate the structure of the matter and provide answers on important issues related to the formation of the universe. DUNE has the participation of researchers from more than 100 countries, with Brazil as one of the signatories.
From Nature, Feb. 17, 2021: Fermilab guest composer David Ibbett writes about his latest piece, Neutrino Music, and how bringing artists and scientists together on the stage can help them to communicate the complex beauty of our world in a language that everyone can understand and appreciate.
From AZoMaterials, Feb. 18, 2021: Fermilab scientist Jeff McMahon and his research team have designed a new kind of metamaterials-based antireflection coating for the silicon lenses used in cameras used to capture the cosmic microwave background.
From Forbes, Feb. 22, 2021: Fermilab scientist Don Lincoln explains how modern cosmology imagines our universe is an astronomical confection with three primary ingredients: ordinary matter, dark matter and dark energy.
From UKRI, Feb. 22, 2021: UKRI scientists are developing vital software to exploit the large data sets collected by the next-generation experiments in high-energy physics. The new software will have the capability to crunch the masses of data that the LHC at CERN and next-generation neutrino experiments, such as the Fermilab-hosted Deep Underground Neutrino Experiment, will produce this decade.