A budding strategy for large-scale science in Latin America
For the first time, scientists and policy-makers are creating a regional strategy for scientific projects in Latin America, starting with a focus on high-energy physics and cosmology.
1241 - 1250 of 2155 results
For the first time, scientists and policy-makers are creating a regional strategy for scientific projects in Latin America, starting with a focus on high-energy physics and cosmology.
Latin American institutions are instrumental in creating photon detectors for the Deep Underground Neutrino Experiment.
From Washington University’s The Source, Oct. 23, 2019: The Department of Energy has awarded new funding to boost research on dark matter, the mysterious substance that makes up an astounding 85% of the matter in the universe. The Axion Dark Matter eXperiment is one of the fund’s recipients, and a number of Washington University scientists are collaborating on the project.
From Gizmodo, Oct. 23, 2019: Ahead lies a whole frontier in particle physics of grand unsolved mysteries, including why there’s more matter than antimatter in the universe, what the true identity of dark matter and dark energy is, or how the strange, ultraweak neutrino particles ended up so ghostly. The Fermilab-hosted DUNE and Muon g-2 experiments are among those looking for answers.
Maria Teresa Dova has been instrumental in bringing scientists in Argentina new opportunities to participate in particle physics and astrophysics experiments, including one that co-discovered the Higgs boson.
Feeling left out of some traditional paths to community in particle physics, a group of Latin American researchers created their own way to connect.
From MIT Technology Review, Oct. 21, 2019: We’ve seen ripples in space-time only when the universe’s biggest events occur. Now there might be a way to spot them ahead of time. MAGIS-100 is a project designed to see whether shooting frozen atoms with lasers can be used to observe ultrasensitive signals that might be stretching through space-time. If successful, it could help usher in a new era of “atom interferometry” that could reveal some of the secrets of gravitational waves, dark matter, quantum mechanics, and other heady topics.
Ground-based experiments designed to study the cosmic microwave background have gotten larger and more sophisticated over time. Now, nearly 200 scientists who have up until this point worked on different competing CMB experiments have joined forces to propose a fourth-generation experiment, the largest ground-based one yet, called CMB-S4.
From University of Maryland, Oct. 17, 2019: Fermilab scientist Charles Thangaraj received the 40 under 40 Chicago Scientists award at the 2nd Annual Halo Awards on Oct. 12 at the Museum of Science and Industry in Chicago. The Halo Awards ceremony recognizes scientists for their dedication to translating research into real-world applications that meaningfully impact people’s lives.
From Brookhaven National Laboratory, Oct. 11, 2019: Dmitri Denisov, a leading physicist and spokesperson of the DZero experiment, has been named deputy associate lab director for high-energy physics at Brookhaven National Laboratory. In this role, Denisov is responsible for Brookhaven’s strategic planning in high-energy physics and oversees a wide range of particle physics projects at the lab.