Accelerator-based neutrino experiments dig deep to solve mystery of neutrino oscillations
Experiments at Fermilab and other laboratories are investigating neutrino oscillations in detail to discover the physics beyond the Standard Model.
1021 - 1030 of 1241 results
Experiments at Fermilab and other laboratories are investigating neutrino oscillations in detail to discover the physics beyond the Standard Model.
Hear about the history of the prairie on Sept. 30 and join in the annual prairie harvest on Oct. 3 and Nov. 7
It survived a month-long journey over 3,200 miles, and now the delicate and complex electromagnet is well on its way to exploring the unknown. The Muon g-2 ring has successfully cooled down to operating temperature and powered up, proving that even after a decade of inactivity, it remains a vital and viable scientific instrument.
Scientists think that a Higgs force does exist. But it’s the Higgs boson’s relationship to that force that makes it a bit of a black sheep. It’s the reason that, when the Higgs is added to the Standard Model of particle physics, it’s often pictured apart from the rest of the boson family.
This year, the NSF is awarding grants to fund research on the development of bright beams at the University of Chicago and Northern Illinois University at a level of $680,000 and $560,000, respectively, for a three-year period.
The CMS and ATLAS experiments combined forces to more precisely measure properties of the Higgs boson. Sticking with the philosophy that two experiments are better than one, scientists from the ATLAS and CMS collaborations presented combined measurements of other Higgs properties at the third annual Large Hadron Collider Physics Conference in St. Petersburg, Russia.
Scientist Marcelle Soares-Santos talks about Brazil, neutron stars and a love of discovery.
Scientists on the Dark Energy Survey, using one of the world’s most powerful digital cameras, have discovered eight more faint celestial objects hovering near our Milky Way galaxy. Signs indicate that they, like the objects found by the same team earlier this year, are likely dwarf satellite galaxies, the smallest and closest known form of galaxies.
Scientists from Fermilab and more than 45 institutions around the world have teamed up to design a program to catch this hypothetical neutrino in the act. The program, called the Short-Baseline Neutrino program, makes use of a trio of detectors positioned along one of Fermilab’s neutrino beams.
Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great progress toward its goal of a major leap in our understanding of these ghostly particles.