Top news

291 - 300 of 886 results

DUNE prepares for data onslaught

The detector for the international Deep Underground Neutrino Experiment will collect massive amounts of data from star-born and terrestrial neutrinos. A single supernova burst could provide as much as 100 terabytes of data. A worldwide network of computers will provide the infrastructure and bandwidth to help store and analyze it. Using artificial intelligence and machine learning, scientists are writing software to mine the data – to better understand supernovae and the evolution of our universe.

Playing pool with neutrinos

Hard to believe you can play pool with neutrinos, but certain neutrino events are closer to the game than you think. These special interactions involve a neutrino — famously elusive — striking a particle inside a nucleus like a billiard ball. MINERvA scientists study the dynamics of this subatomic ricochet to learn about the neutrino that triggered the collision. Now they have measured the probability of these quasielastic interactions using Fermilab’s medium-energy neutrino beam. Such measurements are important for current and future neutrino experiments.

Giving voice to neutrinos: Fermilab guest composer David Ibbett releases neutrino-inspired video and commentary

An ensemble of soprano, strings, piano and electronics gives voice to the mysterious neutrino in David Ibbett’s latest musical work as Fermilab guest composer. Mapping the waves of neutrino oscillation onto melodies played by the strings, Ibbett sonifies a neutrino phenomenon typically represented in abstract mathematical expressions. Hear the performance and Ibbett’s comments in this four-minute video.

The cold eyes of DUNE

When scientists begin taking data with the Deep Underground Neutrino Experiment in the mid-2020s, they’ll be able to peer 13.8 billion years into the past and address one of the biggest unanswered questions in physics: Why is there more matter than antimatter? To do this, they’ll send a beam of neutrinos on an 800-mile journey from Fermilab to Sanford Underground Research Facility in South Dakota. To detect neutrinos, researchers at several DOE national laboratories, including Fermilab, are developing integrated electronic circuitry that can operate in DUNE’s detectors — at temperatures around minus 200 degrees Celsius. They plan to submit their designs this summer.

Amanda Early, Fermilab education program leader, selected STEP UP ambassador

Amanda Early is one of 79 physics educators selected to be a STEP UP Program ambassador. STEP UP ambassadors are high school physics teachers that train others on how to effectively reduce barriers for women in physics. The program mobilizes thousands of teachers to help engage young women in physics and inspire them to pursue physics in college.