Public

From The Innovation Platform, July 10, 2020: In this Q&A, Mauricio Suarez, Illinois Accelerator Research Center head and Fermilab deputy head of technology development and industry engagements, discusses the development of compact particle accelerators, using accelerators for the environment and in medicine, and commercializing technologies developed for high-energy physics.

From Lawrence Berkeley National Laboratory, June 17, 2020: While COVID-19 risks had led to a temporary halt in fabrication work on high-power superconducting magnets built by a collaboration of three national labs for an upgrade of the world’s largest particle collider at CERN in Europe, researchers at Berkeley Lab are still carrying out some project tasks. Fermilab scientist Giorgio Apollinari, head of the U.S.-based magnet effort for the HL-LHC, is quoted in this piece.

From Science News, June 17, 2020: An experiment searching for cosmic dark matter may have finally detected something. But it’s not dark matter. Scientists with the XENON1T experiment reported data June 17 showing an unexpectedly large number of blips within their detector. Fermilab scientist Dan Hooper is quoted in this piece.

The 29th International Conference on Neutrino Physics and Astrophysics brings together thousands of researchers for the latest developments in the field.

The discovery of the muon originally confounded physicists. Today international experiments are using the previously perplexing particle to gain a new understanding of our world.

We know that neutrinos aren’t massless, they’re just incredibly light — a million times lighter than the next lightest particle, the electron. And they don’t seem to get their mass in the same way as other particles in the Standard Model.

An international team of theoretical physicists have published their calculation of the anomalous magnetic moment of the muon. Their work expands on a simple yet richly descriptive equation that revolutionized physics almost a century ago and that may aid scientists in the discovery of physics beyond the Standard Model. Now the world awaits the result from the Fermilab Muon g-2 experiment.

From Scientific American, June 9, 2020: Dark matter researchers are reassessing theories about how dark matter particles lighter than a proton might appear in their detectors. In a recent paper, Fermilab scientists Noah Kurinsky and Gordan Krnjaic propose that a detector could find plasmons — aggregates of electrons moving together in a material — produced by dark matter.