Public

David Ibbett, Fermilab’s first guest composer, converts real scientific data into musical notes and rhythms. His latest piece, “MicroBooNE,” will make its world premiere at a virtual concert on Dec. 8. In this audio interview, Ibbett shares a sneak peek of the song and explains his compositional process.

From Black Hills Pioneer, Nov. 17, 2020: Thyssen Mining Company, one of North America’s largest mining companies, has signed a three-year contract to excavate space for the Long Baseline Neutrino Facility at Sanford Lab in South Dakota. The company plans to bring about 110 jobs for miners, operators, mechanics, electricians, engineers, and managers. Thyssen Mining is currently preparing office space in Lead, as well as getting personnel lined up, contracting with local vendors, and preparing equipment for the project.

This month, Thyssen Mining Inc. was awarded the contract to excavate the gigantic caverns for Fermilab’s Long-Baseline Neutrino Facility. Excavation crews will drill, blast and remove approximately 800,000 tons of rock to create the underground space for LBNF. When complete, the facility will house the enormous particle detector for the international Deep Underground Neutrino Experiment, hosted by Fermilab.

From Inside Science, Nov. 12, 2020: A recent experiment has created a one-way quantum network between two labs, reaching a milestone on the path to creating a quantum internet. Fermilab Deputy Director Joe Lykken weighs in.

From Bulgarisches Wirtschaftsblatt, Nov. 11, 2020: Während die Wissenschaftler im Fermi National Accelerator Laboratory des US-Energieministeriums auf die mit Spannung erwarteten ersten Ergebnisse des Muon g-2-Experiments warten, setzen die mitarbeitenden Wissenschaftler des Argonne National Laboratory des DOE weiterhin das einzigartige System ein, das das Magnetfeld im Experiment mit beispielloser Präzision abbildet.

From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

From Gizmodo, Nov. 10, 2020: Fermilab and University of Maryland scientist Dan Carney and a small group of scientists have begun work on a prototype they say could one day lead to a dark matter detector capable of pinpointing the minute gravitational pull of a particle we can neither see nor feel. The detector is simple in design, but the theory behind its construction amounts to a fundamental rethinking of the search for dark matter.

Researchers have proposed a novel method for finding dark matter, the cosmos’s mystery material that has eluded detection for decades. The proposed experiment, in which a billion millimeter-sized pendulums would act as dark matter sensors, would be the first to hunt for dark matter solely through its gravitational interaction with visible matter.