neutrino

151 - 160 of 539 results

New research sheds light on neutrino-nucleus interactions

    From Sci News, Oct. 2, 2020: A research team from four national laboratories, including Fermilab and Argonne, have undertaken work at two Fermilab neutrino experiments — MiniBooNE and NOvA — to construct a model of how neutrinos interact with atomic nuclei. This knowledge is essential to unravel an even bigger mystery: why during their journey through space or matter neutrinos magically morph from one into another of three possible types or flavors.

    With to-do list checked off, U.S. physicists ask, ‘What’s next?’

      From Science, Oct. 2, 2020: As U.S. particle physicists start to drum up new ideas for the next decade in a yearlong Snowmass process they have no single big project to push for (or against). Physicists have just started to build the current plan’s centerpiece: The Long-Baseline Neutrino Facility at Fermilab will shoot particles through 1,300 kilometers of rock to the Deep Underground Neutrino Experiment in South Dakota. Fermilab Deputy Director of Research Joe Lykken and Fermilab scientist Vladimir Shiltsev comment on other possible pursuits in high-energy physics.

      Understanding ghost particle interactions

        From Argonne National Laboratory, Sept. 28, 2020: A research team from four national laboratories, including Fermilab and Argonne, have undertaken work at two Fermilab neutrino experiments — MiniBooNE and NOvA — to construct a model of how neutrinos interact with atomic nuclei. This knowledge is essential to unravel an even bigger mystery: why during their journey through space or matter neutrinos magically morph from one into another of three possible types or flavors.

        Powerful new observatory will taste neutrinos’ flavors

          From Scientific American, Sept. 22, 2020: The Chinese JUNO experiment will aim to answer a mystery about the particles’ mass. It will be joined by the international Deep Underground Neutrino Experiment later this decade in its search for answers that neutrinos can provide. Fermilab Deputy Director Joe Lykken weighs in on how neutrinos will address the universe’s pressing questions.

          ICEBERG tests future neutrino detector systems with ‘beautiful’ results

          Scientists are testing the components and systems for the international Deep Underground Neutrino Experiment, hosted by Fermilab, with other liquid-argon particle detectors. One such detector is ICEBERG, which is over 10,000 times smaller than DUNE will be. ICEBERG’s measurements are providing insight for future neutrino experiments.

          The neutrino painter

          Particle physics is driven by surprise. Researchers in the 1960s studying tiny but ubiquitous particles called neutrinos found only a fraction of what they expected to be in their detector. That unexpected result eventually led to the discovery that neutrinos are shape-shifters, oscillating between three types as they travel. In this stop-motion video, Symmetry writer Zack Savitsky imagines a painter discovering a similar surprise among his art supplies.