South Dakota

21 - 30 of 69 results

Inner Workings: Physicists dig deep to seek the origin of matter

    From the Proceedings of the National Academy of Sciences, July 9, 2019: The international Deep Underground Neutrino Experiment, hosted by Fermilab, will start running in 2026, studying an intense beam of neutrinos that starts at Fermilab and that will be measured in underground caverns in Lead, South Dakota. Fermilab scientists Deborah Harris and Sam Zeller talk about the mysteries of neutrinos and how DUNE will address them in this in depth article.

    Sanford Underground Research Facility boosting South Dakota’s future

      From Kelo, July 19, 2019: Fermilab’s Patrick Weber and others talk about the international, Fermilab-hosted Deep Underground Neutrino Experiment and its Long-Baseline Neutrino Facility in this 8-minute video. Sanford Underground Research Facility is home to the DUNE far detector, and the world-leading research taking place at there is giving scientists from a variety of disciplines a wealth of information about the universe, the geology of the region and life underground.

      Lead experiment like a giant microscope, Chicago lab director says

        From Rapid City Journal, July 12, 2019: Fermilab Director Nigel Lockyer was the guest for a free public speaker series held one day prior to Neutrino Day, a full day of neutrino-themed public activities in Lead. Lockyer spoke about is known as the Deep Underground Neutrino Experiment (DUNE), housed in the Long Baseline Neutrino Facility (LBNF), which will have its South Dakota component at the Sanford Underground Research Facility in the former Homestake mine. It’s a billion-dollar international collaboration, and it’s described as the largest particle physics project ever built in the United States.

        Excavating for science in former gold mine

          From Construction Equipment Guide, May 15, 2019: Fermilab’s Chris Mossey and Doug Pelletier talk about the international Deep Underground Neutrino Experiment, hosted by Fermilab, and the Long-Baseline Neutrino Facility, much of which will be built in the extensive maze of caverns at the former Homestake gold mine in South Dakota’s beautiful Black Hills. The site is being transformed into a laboratory designed to unlock the mysteries of some of the smallest particles in the universe, neutrinos.

          DUNE: The neutrinos must flow

            From DOE’s Direct Current podcast, May 7, 2019: This episode of Direct Current takes a subatomic sojourn into the international Deep Underground Neutrino Experiment, hosted by Fermilab, a massive international research project aiming to unlock the secrets of the neutrino with help from more than 175 institutions in over 30 countries. Join Fermilab’s Chris Mossey, Bonnie Fleming and Lia Merminga and DUNE collaborator Christos Touramanis on a tour from Fermilab to CERN to the bottom of a former gold mine a mile beneath the hills of South Dakota.

            Existing spaces a mile underground on the 4850 Level are being rehabbed to prepare for the excavation of the LBNF caverns. The space shown here is the area that will be used for loading rock into the buckets (“skips”) to transport it up the Ross Shaft. Credit: Fermilab

            Long-Baseline Neutrino Facility pre-excavation work is in full swing

            Excavating about 800,000 tons of rock a mile underground, bringing it to the surface, and then transporting it to its final resting place is a huge job and part of the LBNF/DUNE project. Creating the infrastructure for that job is a huge amount of work by itself and is going on right now.

            Why Fermilab is making a neutrino detector 800 miles long

              From Discover, March 12, 2019: Fermilab, along with the Sanford Underground Research Facility in South Dakota, is starting a new project called the Deep Underground Neutrino Experiment, or DUNE. The goal is to track and study shadowy neutrinos like never before. Fermilab scientists Deborah Harris and Angela Fava discuss the experiment.

              Retired equipment lives on in new physics experiments

              Physicists often find thrifty, ingenious ways to reuse equipment and resources. What do you do about an 800-ton magnet originally used to discover new particles? Send it off on a months-long journey via truck, train and ship halfway across the world to detect oscillating particles called neutrinos, of course. It’s all part of the vast recycling network of the physics community.