STFC

From UK Research and Innovation, October 13, 2022: The Science and Technology Facilities Council has begun testing of Diamond Light Source for an energy-saving super-magnet for our next generation of particle accelerator. Designed by scientists and engineers at STFC, the zero power tuneable optics magnet (ZEPTO) is a permanent, tuneable magnet that consumes zero electrical power.

From UKRI, Feb. 22, 2021: UKRI scientists are developing vital software to exploit the large data sets collected by the next-generation experiments in high-energy physics. The new software will have the capability to crunch the masses of data that the LHC at CERN and next-generation neutrino experiments, such as the Fermilab-hosted Deep Underground Neutrino Experiment, will produce this decade.

Engineers and technicians in the UK have started production of key piece of equipment for a major international science experiment. The UK government has invested $89 million in the international Deep Underground Neutrino Experiment. As part of the investment, the UK is delivering a series of vital detector components built at the Science and Technology Facilities Council’s Daresbury Laboratory.

From Labmate, Feb. 19, 2020: UK Research and Innovation representatives and the U.S. Department of Energy have signed an agreement outlining £65 million in contributions by UK research institutions and scientists to the international Deep Underground Neutrino Experiment and related projects hosted by Fermilab.

From Inside Science, Feb. 5, 2020: The next generation of particle physics just got a whole lot closer. Scientists at the Muon Ionization Cooling Experiment have developed a revolutionary new process that, for the first time, makes a muon particle collider within reach. Fermilab scientist Vladimir Shiltsev comments on how muon ionization cooling is a linchpin in demonstrating the technical feasibility of muon colliders.

From Science News, Feb. 5, 2020: A new experiment raises prospects for building a particle accelerator that collides particles called muons, which could lead to smashups of higher energies than any engineered before. Fermilab scientist Vladimir Shiltsev comments on how scientists with the Muon Ionization Cooling Experiment, or MICE, have cooled a beam of muons, a necessary part of preparing the particles for use in a collider, the team reports online Feb. 5 in Nature.

From Scientific American, Feb. 5, 2020: The best-laid plans of MICE and muons did not go awry: Physicists at the International Muon Ionization Cooling Experiment, or MICE, collaboration have achieved their years-long goal of quickly sapping energy from muons. The results are the first demonstration of ionization cooling, a technique which could allow researchers to control muons for future collider applications — an epochal achievement, according to Fermilab physicist Vladimir Shiltsev.