Newsroom

581 - 590 of 1255 results

Massless particles can’t be stopped

Imagine a particle. What comes to mind? If you aren’t a theoretical particle physicist, chances are you picture a tiny ball, bobbing in space. But that’s not quite correct. One way to prove it: Try to imagine that tiny ball as a particle with no mass. If a particle has no mass, how can it exist?

Get to know 10 early-career theorists

Right now could be considered one of the best — and most uncertain — times in theoretical physics. That’s what Symmetry heard in interviews with 10 junior faculty in the field. They talk about what keeps them up at night, their favorite places to think and how they explain their jobs to nonscientists.

Three sky surveys completed in preparation for Dark Energy Spectroscopic Instrument

It took three sky surveys to prepare for a new project that will create the largest 3-D map of the universe’s galaxies and glean new insights about the universe’s accelerating expansion. This Dark Energy Spectroscopic Instrument project will explore this expansion, driven by a mysterious property known as dark energy, in great detail. The surveys, which wrapped up in March, have amassed images of more than 1 billion galaxies and are essential in selecting celestial objects to target with DESI, now under construction in Arizona.

The future of particle accelerators may be autonomous

Particle accelerators are some of the most complicated machines in science. In today’s more autonomous era of self-driving cars and vacuuming robots, efforts are going strong to automate different aspects of the operation of accelerators, and the next generation of particle accelerators promises to be more automated than ever. Scientists are working on ways to run them with a diminishing amount of direction from humans.

The language of physics

Word fans, rejoice! Symmetry is back with another list of 10 common words that take on a new meaning when spoken by scientists. Take these physics words for a spin.

Recycler

An interaction of slipping beams

In particle accelerators, the greater a beam’s intensity, the more opportunities there are to study particle interactions. One way to increase the intensity is to merge two beams with a technique called slip-stacking. However, when combining them, the beams’ interaction may cause instability. A Fermilab scientist has created a successful model of the fraught dynamics of two particle beams in close contact, leading to smoother sailing in this area of particle acceleration.

Department of Energy announces $75 million for high-energy physics research

The U.S. Department of Energy has announced $75 million in funding for 66 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. The projects involve scientists at 51 U.S. institutions of higher learning across the nation and include both experimental and theoretical research into such topics as the Higgs boson, neutrinos, dark matter, dark energy and the search for new physics.