From Forbes, Jan. 14, 2021: The Dark Energy Survey recently publicly released an enormous amount of data for anyone to use. This data set contains nearly seven hundred million individual astronomical objects. Fermilab scientist Don Lincoln explains how collaborators on the Dark Energy Survey study the history of the universe and highlights a number of the scientific findings in DES’s rich trove of data.
astrophysics
The international collaboration, including Fermilab, the National Center for Supercomputing Applications, NOIRLab and others, releases a massive, public collection of astronomical data and calibrated images from six years of surveys. This data release is one of the largest astronomical catalogs issued to date.
From Forbes, Dec. 27, 2020: Astronomers have long known that the matter that they’ve seen is less than half of the atomic matter that exists. Several hypotheses have been advanced as to where that matter could be found. Fermilab scientist Don Lincoln describes how a team of astronomers has combined a series of astronomical facilities, including the Dark Energy Camera, to look for a filament of gas connecting two galaxy clusters. They were able to image the largest and hottest filament recorded to date.
From CNN, Dec. 18, 2020: Fermilab scientist Don Lincoln summarizes the results of a group of researchers who, through simulation, reconstruct the family tree of the Milky Way, including the merging of the previously unknown dwarf galaxy Kraken.
From The New York Times, Dec. 8, 2020: Scientists are puzzling over why the universe is not as dark as expected. Fermilab scientist Dan Hooper weighs in.
From CNN, Nov. 28, 2020: The explosion of a supernova is so powerful that modern telescopes can see it half a universe away. A cautious person might wonder, “What would happen to Earth if this happened to a nearby star?” In this article, Fermilab scientist Don Lincoln discusses a paper from University of Colorado at Boulder’s Robert Brakenridge, who claims that he has found evidence here on Earth of nearby supernovae. What form does this evidence take? Ancient radioactive tree rings.
The NOvA experiment, best known for its measurements of neutrino oscillations using particle beams from Fermilab accelerators, has been turning its attention to measurements of cosmic phenomena. In a series of results, NOvA reports on neutrinos from supernovae, gravitational-wave events from black hole mergers, muons from cosmic rays, and its search for the elusive monopole.