neutrino

Hector Carranza Jr. of the University of Texas at Arlington has received the prestigious Department of Energy Office of Science Graduate Student Research award, or SCGSR, to conduct his research at Fermilab. DOE awarded the fellowship to 62 students from U.S. universities. He will work on light-mass dark matter searches at the ICARUS neutrino experiment.

From Sanford Underground Research Facility, May 12, 2020: Part I in Sanford Lab’s series exploring the science goals of the international Deep Underground Neutrino Experiment discusses antimatter, CP violation and the origins of the universe.

The detector for the international Deep Underground Neutrino Experiment will collect massive amounts of data from star-born and terrestrial neutrinos. A single supernova burst could provide as much as 100 terabytes of data. A worldwide network of computers will provide the infrastructure and bandwidth to help store and analyze it. Using artificial intelligence and machine learning, scientists are writing software to mine the data – to better understand supernovae and the evolution of our universe.

Hard to believe you can play pool with neutrinos, but certain neutrino events are closer to the game than you think. These special interactions involve a neutrino — famously elusive — striking a particle inside a nucleus like a billiard ball. MINERvA scientists study the dynamics of this subatomic ricochet to learn about the neutrino that triggered the collision. Now they have measured the probability of these quasielastic interactions using Fermilab’s medium-energy neutrino beam. Such measurements are important for current and future neutrino experiments.

From INFN, April 9, 2020: L’industria di solito non utilizza l’elettronica che opera a temperature criogeniche, perciò i fisici delle particelle hanno dovuto costruirsela da sé. Una collaborazione tra numerosi laboratori nazionali afferenti al Dipartimento dell’Energia, incluso il Fermilab, ha sviluppato prototipi dell’elettronica che verrà alla fine utilizzata nell’esperimento internazionale DUNE – Deep Underground Neutrino Experiment, ospitato dal Fermilab.

From Quanta Magazine, April 15, 2020: The first official evidence of a key imbalance between neutrinos and antineutrinos provides one of the best clues for why the universe contains something rather than nothing. Fermilab scientist Debbie Harris comments on the T2K experiment’s latest result. Fermilab’s NOvA experiment and the international Deep Underground Neutrino Experiment, hosted by Fermilab, will also help provide a more precise understanding of the asymmetry.

From BBC News, April 16, 2020: Stars, galaxies, planets, pretty much everything that makes up our everyday lives owes its existence to a cosmic quirk. The nature of this quirk, which allowed matter to dominate the universe at the expense of antimatter, remains a mystery. Now, results from the T2K experiment in Japan has given strong hints that the CP violation effect could be large for neutrinos. The international Deep Underground Neutrino Experiment, hosted by Fermilab, might detect the effect faster than expected.

From Space.com, April 15, 2020: A new study from the T2K experiment looked hard for signs of CP symmetry violation in neutrinos and came up with some intriguing results. The international Deep Underground Neutrino Experiment, hosted by Fermilab, will provide complementary techniques and measurements that may provide a more definitive answer in the quest for CP violation.

From Science, April 15, 2020: Neutrinos behave differently from their antimatter counterparts, antineutrinos, report physicists on the T2K experiment. The result is far from conclusive, but the asymmetry, known as CP violation, could help explain how the newborn universe generated more matter than antimatter. NOvA spokesperson Patricia Vahle of William & Mary comments on the T2K result and NOvA’s measurements of CP violation. When the international Deep Underground Neutrino Experiment, hosted by Fermilab, comes online, it will be able to make more precise measurements of neutrinos’ behavior.