superconducting radio-frequency technology

1 - 10 of 18 results

Fermilab sees record performance from next-generation accelerator component

Accelerator experts at three national labs have advanced the next generation of cryomodules, the building blocks of particle accelerators. A prototype built for the high-energy upgrade of SLAC’s LCLS-II X-ray laser has advanced the state of the art, packing more acceleration into a smaller distance, and could dramatically improve future accelerators.

Two women stand side by side looking at an image of a red vessel in front of a long science experiment that takes up the rest of the photo. The woman with gray hair, on the right, and the woman with long brown hair on the left both hold the document with both hands.

Successful tests pave the way for Fermilab’s next-generation particle accelerator

This spring testing wrapped up at the PIP-II Injector Test Facility, or PIP2IT. The successful outcome paves the way for the construction of PIP-II, a new particle accelerator that will power record-breaking neutrino beams and drive a broad physics research program at Fermilab for the next 50 years.

TESLA’s high-gradient march

    From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

    Particle accelerator technology could solve one of the most vexing problems in building quantum computers

    One of the most difficult problems to overcome in developing a quantum computer is finding a way to maintain the lifespan of information held in quantum bits, called qubits. Researchers at Fermilab and Argonne National Laboratory are working to determine whether devices used in particle accelerators can help solve the problem. The team will run simulations on high-performance computers that will enable them to predict the lifespan of information held within these qubits using smaller versions of these devices, taking us one step closer to the age of quantum computing.

    Fermilab breaks ground for new accelerator

      From WDCB’s First Light, March 24, 2019: Brian O’Keefe interviews Fermilab PIP-II Project Director Lia Merminga about PIP-II, an accelerator project critical to the lab’s future. Fermilab broke ground on PIP-II on March 15. Learn about how PIP-II will power the international Deep Underground Neutrino Experiment, hosted by Fermilab, and the lab’s experimental program in this 15-minute piece.