External

1141 - 1150 of 2216 results

Leftover Big Bang light helps calculate how massive faraway galaxies are

    From UChicago News, Feb. 6, 2020: Fermilab and University of Chicago scientist Brad Benson and colleagues use a different method to calculate the masses of distant galaxies: the polarization, or orientation, of the light left over from the moments after the Big Bang. In doing so, they demonstrate how to “weigh” galaxy clusters using light from the earliest moments of the universe — a new method that could help shed light on dark matter, dark energy and other mysteries of the cosmos.

    Fermilab physicists make science real for students

      From Kane County Chronicle, Feb. 5, 2020: Some people might think that Fermilab physicists are unapproachable eggheads, probing the deepest mysteries of science from their secluded laboratories without personal lives or connections to the rest of humanity. At their first reverse science fair, students at J.B. Nelson Elementary found out Fermilab scientists are just like everyone else — they aren’t geniuses. They just like science a lot.

      New kind of particle collider could reach higher energy at a lower cost

        From Inside Science, Feb. 5, 2020: The next generation of particle physics just got a whole lot closer. Scientists at the Muon Ionization Cooling Experiment have developed a revolutionary new process that, for the first time, makes a muon particle collider within reach. Fermilab scientist Vladimir Shiltsev comments on how muon ionization cooling is a linchpin in demonstrating the technical feasibility of muon colliders.

        A barrier to colliding particles called muons has been smashed

          From Science News, Feb. 5, 2020: A new experiment raises prospects for building a particle accelerator that collides particles called muons, which could lead to smashups of higher energies than any engineered before. Fermilab scientist Vladimir Shiltsev comments on how scientists with the Muon Ionization Cooling Experiment, or MICE, have cooled a beam of muons, a necessary part of preparing the particles for use in a collider, the team reports online Feb. 5 in Nature.

          MICE cold: Collaboration demonstrates muon ionization cooling

            From Scientific American, Feb. 5, 2020: The best-laid plans of MICE and muons did not go awry: Physicists at the International Muon Ionization Cooling Experiment, or MICE, collaboration have achieved their years-long goal of quickly sapping energy from muons. The results are the first demonstration of ionization cooling, a technique which could allow researchers to control muons for future collider applications — an epochal achievement, according to Fermilab physicist Vladimir Shiltsev.

            Fermilab to host Family Open House on Feb. 9

              From Kane County Chronicle, Feb. 4, 2020: This year’s events will feature The Great Neutrino Hunt, The Mr. Freeze Cryogenics Show, live physics demonstrations, a physics carnival developed and presented by high school students, and several activities for kids and their parents. The event also will feature tours of the Linear Accelerator Gallery and the Muon g-2 experiment and a driving tour of the site.

              Estancia en el Fermilab me abrió panoramas de ciencia: Alumno

                From University of Colima’s El Comentario, Feb. 4, 2020: Alexis Solís Ceballos, estudiante de Ingeniería Química Metalúrgica en la Facultad de Ciencias Químicas de la Universidad de Colima, participó recientemente en una estancia de tres meses en el Fermi National Accelerator Laboratory (Fermilab) de Estados Unidos, donde un grupo de científicos de todo el mundo explora las altas energías para responder preguntas fundamentales que ayudarían a entender mejor cómo funciona el universo.

                On background

                To some degree, scientists on all of today’s particle physics experiments share a common challenge: How can they pick out the evidence they are looking for from the overwhelming abundance of all the other stuff in the universe getting in their way? Physicists refer to that stuff — the unwelcome clamor of gamma rays, cosmic rays and radiation crowding particle detectors — as background. They deal with background in their experiments in two ways: by reducing it and by rejecting it.