Public

1081 - 1090 of 2563 results

Physicists revive hunt for dark matter in the heart of the Milky Way

    From Science, Nov. 12, 2019: Three years ago, a team of particle astrophysicists appeared to nix the idea that a faint glow of gamma rays in the heart of our Milky Way galaxy could be emanating from dark matter. But the conclusion that the gamma rays come instead from more ordinary sources may have been too hasty, the team reports in a new study. So the dark matter hypothesis may be alive and well after all. Fermilab scientist Dan Hooper is quoted in this article.

    How do you make the world’s most powerful neutrino beam?

    The Deep Underground Neutrino Experiment will tackle some of the biggest mysteries in physics — and to do so, it will need the most intense high-energy beam of neutrinos ever created. Engineers are up to the complicated task, which will need extreme versions of some common-sounding ingredients: magnets and pencil lead.

    DOE awards Fermilab and partners $3.2 million for Illinois quantum network

    Researchers are wielding quantum physics, technologies and expertise to develop a proposed Illinois Express Quantum Network, which would stretch between Fermilab and Northwestern University’s Evanston and Chicago campuses. The metropolitan-scale, quantum-classical hybrid design combines quantum technologies with existing classical networks to create a multinode system for multiple users.

    How to share the data from LSST

      When the Large Synoptic Survey Telescope high in the Chilean Andes becomes fully operational in 2022, its 3.2-gigapixel camera will collect the same amount of data — every night. And it will do so over and over again for ten years. The sky survey will collect so much data that data scientists needed to figure out new ways for astronomers to access it.

      Gotta catch ’em all: new NOvA results with neutrinos and antineutrinos

      Fermilab’s NOvA neutrino experiment records in its giant particle detector the passage of slippery particles called neutrinos and their antimatter counterparts, antineutrinos. Famously elusive, these particles’ interactions are challenging to capture, requiring the steady accumulation of interaction data to be able to pin down their characteristics. With five years’ worth of data, NOvA is adding to scientists’ understanding of neutrinos’ mass and oscillation behavior.