Dark Energy Camera

1 - 10 of 31 results

A starry night sky with purple diagonal stripe from lower left to upper right corner above an observatory lit up in bright red. A shadow of a building or facility is in the lower right corner.

Dark Energy Survey releases most precise look at the universe’s evolution

The Dark Energy Survey collaboration has created the largest ever maps of the distribution and shapes of galaxies, tracing both ordinary and dark matter in the universe out to a distance of over 7 billion light years. The analysis, which includes the first three years of data from the survey, is consistent with predictions from the current best model of the universe, the standard cosmological model. Nevertheless, there remain hints from DES and other experiments that matter in the current universe is a few percent less clumpy than predicted.

The spiral of the Southern Pinwheel

    From NOIRLab, Feb. 8, 2021: The Dark Energy Camera, originally used to complete the Dark Energy Survey, has taken the most detailed photo of Messier 83, also known as the Southern Pinwheel galaxy. (In DECam’s second act, scientists can apply for time to use it to collect data that is then made publicly available.) In all, 163 DECam exposures went into creating this image.

    Astronomers find missing mass of the universe in vast cosmic filaments

      From Forbes, Dec. 27, 2020: Astronomers have long known that the matter that they’ve seen is less than half of the atomic matter that exists. Several hypotheses have been advanced as to where that matter could be found. Fermilab scientist Don Lincoln describes how a team of astronomers has combined a series of astronomical facilities, including the Dark Energy Camera, to look for a filament of gas connecting two galaxy clusters. They were able to image the largest and hottest filament recorded to date.

      Leftover Big Bang light helps calculate how massive faraway galaxies are

        From UChicago News, Feb. 6, 2020: Fermilab and University of Chicago scientist Brad Benson and colleagues use a different method to calculate the masses of distant galaxies: the polarization, or orientation, of the light left over from the moments after the Big Bang. In doing so, they demonstrate how to “weigh” galaxy clusters using light from the earliest moments of the universe — a new method that could help shed light on dark matter, dark energy and other mysteries of the cosmos.