neutrino

On Feb. 26, a team on Fermilab’s MINERvA neutrino experiment gathered around a computer screen to officially conclude its data acquisition. Even with the data collection over, the work marches on. MINERvA now turns its attention to analyzing the data it has collected over the past nine years of its run.

A supernova's shockwave ejects the outer layers of the star in a catastrophic blast that can briefly shine more brightly than entire galaxies. Image: NASA

Particle detectors recorded neutrinos from supernova SN1987A hours before telescopes saw the first light. Thirty years later, scientists around the world are eager to detect neutrinos from another one. The international Fermilab-hosted Deep Underground Neutrino Experiment will be looking for them. These neutrinos can tell us more about supernovae themselves and may hint at new physics that could upend the Standard Model of particle physics.

From NPR’s Here & Now, March 19, 2019: Fermilab is a global center for research into a tiny particle that could help answer some of the biggest questions in physics: the neutrino. Neutrinos have no electrical charge and almost no mass, but they’re everywhere. Fermilab Director Nigel Lockyer and Fermilab Deputy Chief Research Officer Bonnie Fleming talk about the Deep Underground Neutrino Experiment, visit the NOvA experiment and discuss the benefits of fundamental research.

From INFN, March 15, 2019: Si è tenuta oggi al Fermilab, negli Stati Uniti, la cerimonia di posa della prima pietra di uno dei più importanti progetti per il futuro della fisica, in cui l’Italia porta un contributo tecnologico e scientifico di primo piano. Si tratta del progetto PIP-II (Proton Improvement Plan II) per la realizzazione di un nuovo acceleratore lineare superconduttore, lungo 215 metri.

From Discover, March 12, 2019: Fermilab, along with the Sanford Underground Research Facility in South Dakota, is starting a new project called the Deep Underground Neutrino Experiment, or DUNE. The goal is to track and study shadowy neutrinos like never before. Fermilab scientists Deborah Harris and Angela Fava discuss the experiment.

From CERN Courier, March 8, 2019: Newly published results from the MINOS+ experiment at Fermilab cast fresh doubts on the existence of the sterile neutrino — a hypothetical fourth neutrino flavor that would constitute physics beyond the Standard Model. MINOS+ studies how muon neutrinos oscillate into other neutrino flavors as a function of distance travelled.

From Live Science, Feb. 21, 2019: This primer on neutrinos calls out the search for sterile neutrinos and a recent result from the MiniBooNE neutrino experiment.

From Big Picture Science, Feb. 18, 2019: Fermilab scientist Anne Schukraft is interviewed in this podcast episode about ghostly particles called neutrinos — intriguing partly because they came decades before we had the means to prove their existence.