Tevatron

From the BBC, April 7, 2022: Scientists of the CDF collaboration have found a tiny difference in the mass of the W Boson compared with what the theory says it should be – just 0.1%. If confirmed by other experiments, the implications could be enormous and could challenge the Standard Model of particle physics.

Illustration of four scientists in white lab coats, two of whom are typing, two of whom are looking at and drawing on a screen with equations and 3D images.

Over time, particle physics and astrophysics and computing have built upon one another’s successes. That coevolution continues today. New physics experiments require computing innovation, including cluster computing for the Tevatron, and more recently machine learning and quantum problem-solving.

From CERN, Jan. 26, 2021: This week marks the 50th anniversary of the first proton collisions in CERN’s Intersecting Storage Rings, the first hadron collider ever built. To celebrate, see hadron colliders of the last half-century — including the Tevatron and the Large Hadron Collider — through a historical lens, with an eye toward the quest for high luminosity and new energy frontiers.