Newsroom

511 - 520 of 1235 results

How do you make the world’s most powerful neutrino beam?

The Deep Underground Neutrino Experiment will tackle some of the biggest mysteries in physics — and to do so, it will need the most intense high-energy beam of neutrinos ever created. Engineers are up to the complicated task, which will need extreme versions of some common-sounding ingredients: magnets and pencil lead.

DOE awards Fermilab and partners $3.2 million for Illinois quantum network

Researchers are wielding quantum physics, technologies and expertise to develop a proposed Illinois Express Quantum Network, which would stretch between Fermilab and Northwestern University’s Evanston and Chicago campuses. The metropolitan-scale, quantum-classical hybrid design combines quantum technologies with existing classical networks to create a multinode system for multiple users.

Gotta catch ’em all: new NOvA results with neutrinos and antineutrinos

Fermilab’s NOvA neutrino experiment records in its giant particle detector the passage of slippery particles called neutrinos and their antimatter counterparts, antineutrinos. Famously elusive, these particles’ interactions are challenging to capture, requiring the steady accumulation of interaction data to be able to pin down their characteristics. With five years’ worth of data, NOvA is adding to scientists’ understanding of neutrinos’ mass and oscillation behavior.

Put it to the test beam

Test beams generally sit to the side of full-on accelerators, sipping beam and passing it to the reconfigurable spaces housing temporary experiments. Scientists bring pieces of their detectors — sensors, chips, electronics or other material — and blast them with the well-understood beam to see if things work how they expect, and if their software performs as expected. Before a detector component can head to its forever home, it has to pass the test.

Dark matter experiment’s central component takes a deep dive — nearly a mile underground

The cryostat for Berkeley Lab’s LUX-ZEPLIN experiment — the largest direct-detection dark matter experiment in the U.S. — is successfully moved to its research cavern. This final journey of LZ’s central detector on Oct. 21 to its resting place in a custom-built research cavern required extensive planning and involved two test moves of a “dummy” detector to ensure its safe delivery.

Reidar Hahn

Hahn shot first

After 32 years as Fermilab’s staff photographer, Reidar Hahn is retiring – and saying farewell with a final collection of photos in Fermilab’s art gallery. The exhibit will run from Nov. 6, 2019, to Jan. 3, 2020, with a free artist’s reception on Nov. 8.

DESI opens its 5,000 eyes to capture the colors of the cosmos

Berkeley Lab’s Dark Energy Spectroscopic Instrument aimed its robotic array of 5,000 fiber-optic “eyes” at the night sky Oct. 22 to capture the first images showing its unique view of galaxy light. It was the first test DESI with its nearly complete complement of components. Fermilab contributed key elements to DESI, including the corrector barrel, hexapod, cage and CCDs. Fermilab also provided the online databases used for data acquisition and the software for the instrument’s robotic positioners.