Feeling the universe in the ‘Particle Shrine’
A physicist, a composer and a creative technician team up to translate the unseen particles around us into a format that human bodies can understand.
51 - 60 of 523 results
A physicist, a composer and a creative technician team up to translate the unseen particles around us into a format that human bodies can understand.
From Virginia Tech, Jan. 4, 2023: Learn more about what researchers from the Virginia Tech Center for Neutrino Physics are contributing to the international DUNE collaboration. The Center is well-known for combining experimental and theoretical physics to study neutrinos as they bump into the argon inside the DUNE detector and leave behind trails of energy.
A new 20,000-pound particle detection system built for a neutrino experiment will be transported 3 miles across the Fermilab campus today. About the size of a small house, it will be the heart of the Short-Baseline Near Detector at Fermilab.
From the Black Hills Pioneer, November 12, 2022: How do you fit a 3.5 ton piece of steel that is 6 meters long and 2.5 meters wide safely down the Ross Shaft at Sanford Lab? Justin Evans, a professor at Manchester University, explains how the anode plane assembly traveled from the UK to Lead, SD and its roles as a key component to the DUNE experiment.
An international group of scientists has finished the assembly of the large neutrino detection system for the Short-Baseline Near Detector at Fermilab.
From Science, September 29, 2022: Fermilab’s DUNE and Japan’s Hyper-K experiments are building similar yet different projects that will study neutrino oscillations and search for CP violation in hopes it will lead to answers on how the newborn universe generated more matter than antimatter. Read more on how these two projects are progressing, how they differ and how they might answer more about the elusive neutrino.
From Science News, September 22, 2022: Emily Conover explains in this video why the universe contain so much more matter than antimatter told through the lens of a classic, 8-bit video game, with matter and antimatter locked in an epic battle for cosmic supremacy. Experiments like DUNE will examine ghostly subatomic particles known as neutrinos to provide clues.
From Syracuse University, September 18, 2022: Researchers at Syracuse University have received two new grants that will expand their work with physicists from around the world on projects that include MicroBooNE, DUNE and NOvA. The support comes from the NSF and DOE and will enable graduate and undergraduate students to work on everything from detector construction and operation at Fermilab and Syracuse, to final data analysis and software development.
Scientists are using a detector originally designed to study neutrinos to pin down an elusive nuclear physics measurement.
From Phys.org, August 3, 2022: Fermilab’s NOvA experiment reports analysis on oscillation data delivering some of the most accurate estimates to date describing neutrino oscillations and providing important hints on two important aspects of neutrino physics—the ordering of neutrino masses and the degree of charge-parity (CP) violation. These results set the stage for the next generation of “long-baseline” experiments, like Hyper-K and DUNE, which will dramatically boost our ability to probe elusive aspects of neutrino physics.