Newsroom

On June 19, scientists at the CMS experiment at CERN’s Large Hadron Collider published their 1,000th paper. The monumental achievement reflects an incomparable contribution to humanity’s understanding of the universe — and it’s just the beginning.

Construction workers have carried out the first underground blasting for the Long-Baseline Neutrino Facility, which will provide the space, infrastructure and particle beam for the international Deep Underground Neutrino Experiment. This prep work paves the way for removing more than 800,000 tons of rock to make space for the gigantic DUNE detector a mile underground.

The Department of Energy’s Office of Science has selected three Fermilab scientists to receive the 2020 DOE Early Career Research Award, now in its 11th year. The prestigious award is designed to bolster the nation’s scientific workforce by providing support to exceptional researchers during the crucial early years, when many scientists do their most formative work.

The biggest conference in neutrino physics kicks off on June 22, with two weeks of talks dedicated to one intriguing particle.

The 29th International Conference on Neutrino Physics and Astrophysics brings together thousands of researchers for the latest developments in the field.

The discovery of the muon originally confounded physicists. Today international experiments are using the previously perplexing particle to gain a new understanding of our world.

We know that neutrinos aren’t massless, they’re just incredibly light — a million times lighter than the next lightest particle, the electron. And they don’t seem to get their mass in the same way as other particles in the Standard Model.

An international team of theoretical physicists have published their calculation of the anomalous magnetic moment of the muon. Their work expands on a simple yet richly descriptive equation that revolutionized physics almost a century ago and that may aid scientists in the discovery of physics beyond the Standard Model. Now the world awaits the result from the Fermilab Muon g-2 experiment.