Newsroom

With a ceremony held today, Fermilab joined with its international partners to break ground on a new beamline that will help scientists learn more about ghostly particles called neutrinos. The beamline is part of the Long-Baseline Neutrino Facility, which will house the Deep Underground Neutrino Experiment, an international endeavor to build and operate the world’s most advanced experiment to study neutrinos.

Fermilab scientist Alexey Burov has discovered that accelerator scientists misinterpreted a certain collection of phenomena found in intense proton beams for decades. Researchers had misidentified these beam instabilities, assigning them to particular class when, in fact, they belong to a new type of class: convective instabilities. In a paper published this year, Burov explains the problem and proposes a more effective suppression of the unwanted beam disorder.

The Deep Underground Neutrino Experiment will tackle some of the biggest mysteries in physics — and to do so, it will need the most intense high-energy beam of neutrinos ever created. Engineers are up to the complicated task, which will need extreme versions of some common-sounding ingredients: magnets and pencil lead.

Researchers are wielding quantum physics, technologies and expertise to develop a proposed Illinois Express Quantum Network, which would stretch between Fermilab and Northwestern University’s Evanston and Chicago campuses. The metropolitan-scale, quantum-classical hybrid design combines quantum technologies with existing classical networks to create a multinode system for multiple users.