From Tia Sáng, Sept. 13, 2019: Để xây dựng thế hệ máy gia tốc proton mới có khả năng gia tốc hạt lớn hơn, các nhà khoa học cần những nam châm mạnh nhất để có thể lái các hạt tới gần tốc độ ánh sáng lưu chuyển quanh một vòng tròn. Với một kích cỡ vòng tròn cho trước, để đưa năng lượng của chùm tia đạt mức cao hơn, các nam châm của máy gia tốc cần đạt được lực mạnh hơn để giữ cho chùm tia đi đúng hành trình của mình.
accelerator technology
From KopalniaWiedzy.pl, Sept. 13, 2019: Naukowcy z Fermilab poinformowali o wygenerowaniu najsilniejszego pola magnetycznego stworzonego na potrzeby akceleratorów cząstek. Nowy rekord wynosi 14,1 tesli, a wynik taki uzyskano w magnecie schłodzonym do 4,5 kelwinów, czyli -268,65 stopnia Celsjusza. Poprzedni rekord, 13,8 tesli, został osiągnięty przed 11 laty w Lawrence Berkeley National Laboratory.
The first major superconducting section of the PIP-II accelerator has come to Fermilab: the first of 23 cryomodules for the future accelerator. The cryomodules’ job is to get the lab’s powerful proton beam up and moving, sending it to higher and higher energies, approaching the speed of light. This first cryomodule also represents a successful joint effort between Argonne National Laboratory and Fermilab to design and produce a critical accelerator component for the future heart of Fermilab.
Three United States DOE national laboratories – SLAC, Fermilab and Jefferson Lab – have partnered to build an advanced particle accelerator that will power the LCLS-II X-ray laser. Thanks to technology developed for nuclear and high-energy physics, the new X-ray laser will produce a nearly continuous wave of electrons and allow scientists to peer more deeply than ever before into the building blocks of life and matter.
Giaccone’s research focuses on particle accelerator cavities — the structures that transfer energy to particle beams as the beams race through them. She and her team use plasma to process the inner surface of the cavities in order to remove contaminations. This new technique results in a better-performing accelerator. Her work was recently recognized at the International Conference on RF Superconductivity.
Dhuley and his team at the Illinois Accelerator Research Center have received the William E. Gifford Award for their work on cryocooling acceleration cavities. Their research on cryocooler-based systems is paving the way for compact particle accelerators that can operate at ultracold temperatures without complicated cooling infrastructure.
Particle accelerators are some of the most complicated machines in science. In today’s more autonomous era of self-driving cars and vacuuming robots, efforts are going strong to automate different aspects of the operation of accelerators, and the next generation of particle accelerators promises to be more automated than ever. Scientists are working on ways to run them with a diminishing amount of direction from humans.
A Ph.D. student at the Illinois Institute of Technology conducting his research at Fermilab, Bafia is currently researching a method to draw maximum performance from acceleration cavities. The method, called nitrogen doping, increases superconducting radio-frequency cavity efficiency and boosts beams to higher energies over shorter distances. His work earned him the Best Student Poster Prize at the 2019 International Particle Accelerator Conference.