muons

From Scientific American, Feb. 5, 2020: The best-laid plans of MICE and muons did not go awry: Physicists at the International Muon Ionization Cooling Experiment, or MICE, collaboration have achieved their years-long goal of quickly sapping energy from muons. The results are the first demonstration of ionization cooling, a technique which could allow researchers to control muons for future collider applications — an epochal achievement, according to Fermilab physicist Vladimir Shiltsev.

From Gizmodo, Jan. 25, 2020: Physicists have found all of the particles and forces that the Standard Model describes, but there are still countless mysteries in the universe that the theory fails to explain. Various experiments are now probing the Standard Model for cracks, and this year, scientists hope to unveil a measurement from one of them, the Muon g-2 experiment, a measurement that might break from the theory.

From Nature, Dec. 20, 2019: Fermilab should unveil long-awaited results from Muon g–2, a high-precision measurement of how muons — more-massive siblings of electrons — behave in a magnetic field. Physicists hope that slight anomalies could reveal previously unknown elementary particles.

From Back Reaction, June 13, 2019: The so-called muon g-2 anomaly is a tension between experimental measurement and theoretical prediction. The most recent experimental data comes from a 2006 experiment at Brookhaven National Lab. A new experiment is now following up on the 2006 result: The Muon g-2 experiment at Fermilab.

The Muon g-2 experiment recently started its second run. Scientists use this particle storage, a 50-foot-diameter magnet, to look for hidden particles and forces. Photo: Reidar Hahn

Muon g-2 has begun its second run to search for hidden particles and forces. Muon g-2 collaborators have performed upgrades to improve the experiment’s precision and increase the amount of data it generates. As the experiment starts up again, scientists expect to make the world’s most precise measurement of the muon’s anomalous magnetic moment, which could tell us whether additional, undiscovered particles exist in the universe.