quantum information science

Researchers are wielding quantum physics, technologies and expertise to develop a proposed Illinois Express Quantum Network, which would stretch between Fermilab and Northwestern University’s Evanston and Chicago campuses. The metropolitan-scale, quantum-classical hybrid design combines quantum technologies with existing classical networks to create a multinode system for multiple users.

Today’s quantum computing processors must operate at temperature close to absolute zero, and that goes for their electronics, too. Fermilab’s cryoelectronics experts recently hosted a first-of-its-kind workshop where leaders in quantum technologies took on the challenges of designing computer processors and sensors that work at ultracold temperatures.

From Kane County Connects, Sept. 3, 2019: As part of a number of grants to national laboratories and universities offered through its QuantISED program, DOE’s recent round of funding to Fermilab covers three initiatives related to quantum science. It also funds Fermilab’s participation in a fourth initiative led by Argonne National Laboratory.

A Fermilab group has found a way to simulate, using a quantum computer, a class of particles that had resisted typical computing methods. Their novel approach opens doors to an area previously closed off to quantum simulation in areas beyond particle physics, thanks to cross-disciplinary inspiration.

Fermilab’s quantum program includes a number of leading-edge research initiatives that build on the lab’s unique capabilities as the U.S. center for high-energy physics and a leader in quantum physics research. On the tour, researchers discussed quantum technologies for communication, high-energy physics experiments, algorithms and theory, and superconducting qubits hosted in superconducting radio-frequency cavities.