Author Archive

The detector for the international Deep Underground Neutrino Experiment will collect massive amounts of data from star-born and terrestrial neutrinos. A single supernova burst could provide as much as 100 terabytes of data. A worldwide network of computers will provide the infrastructure and bandwidth to help store and analyze it. Using artificial intelligence and machine learning, scientists are writing software to mine the data – to better understand supernovae and the evolution of our universe.

From Live Science, April 29, 2020: One of the deepest mysteries in physics could be explained by a long-since vanished form of dark matter. Fermilab scientist Dan Hooper is one of the authors of the new result. If an ancient form of dark matter decayed out of existence, that loss would have decreased the mass of the universe, which would have led to less gravity holding the universe together, which would have affected the speed at which the universe expands — helping explain the disagreement between measurements of the universe’s expansion.

Scientists on Large Hadron Collider experiments can learn about subatomic matter by peering into the collisions and asking: What exactly is doing the colliding? When the answer to that question involves rarely seen, massive particles, it gives scientists a unique way to study the Higgs boson. They can study rare, one-in-a-trillion heavy-boson collisions happening inside the LHC.

Hard to believe you can play pool with neutrinos, but certain neutrino events are closer to the game than you think. These special interactions involve a neutrino — famously elusive — striking a particle inside a nucleus like a billiard ball. MINERvA scientists study the dynamics of this subatomic ricochet to learn about the neutrino that triggered the collision. Now they have measured the probability of these quasielastic interactions using Fermilab’s medium-energy neutrino beam. Such measurements are important for current and future neutrino experiments.

From INFN, April 9, 2020: L’industria di solito non utilizza l’elettronica che opera a temperature criogeniche, perciò i fisici delle particelle hanno dovuto costruirsela da sé. Una collaborazione tra numerosi laboratori nazionali afferenti al Dipartimento dell’Energia, incluso il Fermilab, ha sviluppato prototipi dell’elettronica che verrà alla fine utilizzata nell’esperimento internazionale DUNE – Deep Underground Neutrino Experiment, ospitato dal Fermilab.

On April 28, baby bison season officially began. The first calf of the year was born in the late morning, and mother and baby are doing well. Fermilab is expecting between 12 and 14 new calves this spring.

Supernova 1987A, the closest supernova observed with modern technology, excited the world more than 30 years ago — and it remains an intriguing subject of study even today.