Fermilab features

The MINERvA neutrino experiment has a new crime scene investigation technique, one that takes a hard look at the traces that particles leave before fleeing the scene. Researchers used a new technique in a recent MINERvA neutrino investigation. And the new insights they gained on the workings of nuclear effects can help other neutrino experiments.

Scientists on the ArgoNeuT experiment have developed a method that enables them to better distinguish the tracks that particles leave behind in liquid argon, as well as a way to better differentiate between signals and background. And thanks to the software’s great performance, ArgoNeuT will aid larger neutrino experiments in their quest to understand the nature of the subtle neutrino.

For several weeks, a prototype detector for the Fermilab-hosted Deep Underground Neutrino Experiment collected data using beams from CERN’s particle accelerators. The results show a mature technology exceeding all expectations. It’s the culmination of three years of hard work by a global team dedicated to constructing and bringing the new detector online.

Fermilab’s quantum program includes a number of leading-edge research initiatives that build on the lab’s unique capabilities as the U.S. center for high-energy physics and a leader in quantum physics research. On the tour, researchers discussed quantum technologies for communication, high-energy physics experiments, algorithms and theory, and superconducting qubits hosted in superconducting radio-frequency cavities.

The Humboldt Foundation invites awardees to undertake prolonged periods of research in collaboration with scientists in Germany and to promote scientific cooperation between research institutions in both Germany and their home country. During his upcoming visit, Eichten intends to continue to study the systematics of systems involving heavy quarks.

Fermilab scientist Pushpa Bhat was recently elected to the Council of the American Association for the Advancement of Science, the world’s largest scientific society, as a representative for the Section on Physics. Her three-year term begins on Feb. 18. The AAAS Council establishes general policies for the association and reviews all of its programs.

This is a visual display of an ArgoNeuT event showing a long trail left behind by a high energy particle traveling through the liquid argon accompanied by small blips caused by low energy particles.

For the first time, scientists have demonstrated that low-energy neutrinos can be thoroughly identified with a liquid-argon particle detector. The results, obtained with the ArgoNeuT experiment, are promising for experiments that use liquid argon to catch neutrinos, including the upcoming Deep Underground Neutrino Experiment.

Fermilab has finalized an agreement with construction firm Kiewit-Alberici Joint Venture to start pre-excavation work for the Long-Baseline Neutrino Facility, which will house the enormous particle detectors for the Deep Underground Neutrino Experiment. The South Dakota portion of the facility will be built a mile beneath the surface at the Sanford Underground Research Facility in Lead, South Dakota.