Newsroom

Funding will go towards NSF-led AI Research Institutes and DOE QIS Research Centers over five years, establishing 12 multidisciplinary and multi-institutional national hubs for research and workforce development in these critical emerging technologies. Together, the institutes will spur cutting-edge innovation, support regional economic growth and advance American leadership in these critical industries of the future.

Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative. The initiative provides the new Superconducting Quantum Materials and Systems Center — based at Fermilab and comprising 20 partner institutions — $115 million over five years with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center will also develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.

The international Deep Underground Neutrino Experiment collaboration has published a paper about its capability for performing supernova physics. It details the kind of activity DUNE expects in the detector during a supernova burst, how DUNE will know once a supernova occurs and what physics DUNE will extract from the neutrinos. DUNE’s unique strength is its sensitivity to a particular type of neutrino called the electron neutrino, which will provide scientists with supernova data not available from any other experiment.

Scientists know the Higgs boson interacts with extremely massive particles. Now, they’re starting to study how it interacts with lighter particles as well.

The skipper CCD instrument at the heart of scientist Javier Tiffenberg’s research shows promise for dark matter, neutrino detection and more. For the development of this forefront detector, Tiffenberg has won this year’s Universities Research Association Early Carer Award.

Postdoctoral scientist Adi Ashkenazi of the Massachusetts Institute of Technology has earned the Universities Research Association 2020 Tollestrup Award for her research into neutrinos, ghostly particles that can pass through solid matter at high speeds without slowing. Working with two different experiments, she and her collaborators hope to improve their simulations of neutrino interactions with atomic nuclei.