Frightfully smart jack-o’-lanterns
These physics-themed jack-o’-lanterns come with extra brains.
691 - 700 of 701 results
These physics-themed jack-o’-lanterns come with extra brains.
The forthcoming Mu2e experiment at Fermilab will kidnap muons and trap them in aluminum atoms. But what exactly happens when you shoot a muon at an aluminum foil? While Mu2e is under construction, its scientists are already getting some valuable answers from a smaller accomplice: AlCap.
Symmetry sits down with Lindsay Olson as she wraps up a year of creating art inspired by particle physics.
Deep in the dense core of a black hole, protons and electrons are squeezed together to form neutrons, sending ghostly particles called neutrinos streaming out. Matter falls inward. In the textbook case, matter rebounds and erupts, leaving a neutron star. But sometimes, the supernova fails, and there’s no explosion; instead, a black hole is born. Scientists hope to use neutrino experiments to watch a black hole form.
Ghostlike subatomic particles called neutrinos could hold clues to some of the greatest scientific questions about our universe: What extragalactic events create ultra-high-energy cosmic rays? What happened in the first seconds following the big bang? What is dark matter made of?
Is it possible that these fundamental building blocks of atoms have a finite lifetime?
For physicists, seeing is not always believing.
Finding a small discrepancy in measurements of the properties of neutrinos could show us how they fit into the bigger picture. One of those properties is a parameter called theta13. Theta13 relates deeply to how neutrinos mix together, and it’s here that scientists have seen the faintest hint of disagreement from different experiments.
It survived a month-long journey over 3,200 miles, and now the delicate and complex electromagnet is well on its way to exploring the unknown. The Muon g-2 ring has successfully cooled down to operating temperature and powered up, proving that even after a decade of inactivity, it remains a vital and viable scientific instrument.
Scientists think that a Higgs force does exist. But it’s the Higgs boson’s relationship to that force that makes it a bit of a black sheep. It’s the reason that, when the Higgs is added to the Standard Model of particle physics, it’s often pictured apart from the rest of the boson family.