Top news

691 - 700 of 701 results

What happens when you kidnap a muon?

The forthcoming Mu2e experiment at Fermilab will kidnap muons and trap them in aluminum atoms. But what exactly happens when you shoot a muon at an aluminum foil? While Mu2e is under construction, its scientists are already getting some valuable answers from a smaller accomplice: AlCap.

The birth of a black hole, live

Deep in the dense core of a black hole, protons and electrons are squeezed together to form neutrons, sending ghostly particles called neutrinos streaming out. Matter falls inward. In the textbook case, matter rebounds and erupts, leaving a neutron star. But sometimes, the supernova fails, and there’s no explosion; instead, a black hole is born. Scientists hope to use neutrino experiments to watch a black hole form.

A measurement to watch

Finding a small discrepancy in measurements of the properties of neutrinos could show us how they fit into the bigger picture. One of those properties is a parameter called theta13. Theta13 relates deeply to how neutrinos mix together, and it’s here that scientists have seen the faintest hint of disagreement from different experiments.

Muon g-2 magnet successfully cooled down and powered up

It survived a month-long journey over 3,200 miles, and now the delicate and complex electromagnet is well on its way to exploring the unknown. The Muon g-2 ring has successfully cooled down to operating temperature and powered up, proving that even after a decade of inactivity, it remains a vital and viable scientific instrument.

Where the Higgs belongs

Scientists think that a Higgs force does exist. But it’s the Higgs boson’s relationship to that force that makes it a bit of a black sheep. It’s the reason that, when the Higgs is added to the Standard Model of particle physics, it’s often pictured apart from the rest of the boson family.