neutrino

One of two magnetic focusing horns used in the beamline at Fermilab that produces intense neutrino beams for MINERvA and other neutrino experiments.

For the first time, particle physicists have been able to precisely measure the proton’s size and structure using neutrinos with data gathered from thousands of neutrino-hydrogen scattering events collected by MINERvA, a particle physics experiment at the U.S. Department of Energy’s Fermi National Accelerator Laboratory.

For decades, scientists have tried to find a way to measure the mass of the lightest matter particle known to exist. Three new approaches now have a chance to succeed.

From Laser Focus World, Jan. 12, 2023: What does the future of detectors look like and what problems will they solve? Advances in novel detectors are working on some of the most elusive mysteries in science—from quantum teleportation to neutrinos and dark matter. The long-baseline neutrino detectors of DUNE are part of this line up of international detectors.

From Virginia Tech, Jan. 4, 2023: Learn more about what researchers from the Virginia Tech Center for Neutrino Physics are contributing to the international DUNE collaboration. The Center is well-known for combining experimental and theoretical physics to study neutrinos as they bump into the argon inside the DUNE detector and leave behind trails of energy.

A new 20,000-pound particle detection system built for a neutrino experiment will be transported 3 miles across the Fermilab campus today. About the size of a small house, it will be the heart of the Short-Baseline Near Detector at Fermilab.

From the Black Hills Pioneer, November 12, 2022: How do you fit a 3.5 ton piece of steel that is 6 meters long and 2.5 meters wide safely down the Ross Shaft at Sanford Lab? Justin Evans, a professor at Manchester University, explains how the anode plane assembly traveled from the UK to Lead, SD and its roles as a key component to the DUNE experiment.

From Science, September 29, 2022: Fermilab’s DUNE and Japan’s Hyper-K experiments are building similar yet different projects that will study neutrino oscillations and search for CP violation in hopes it will lead to answers on how the newborn universe generated more matter than antimatter. Read more on how these two projects are progressing, how they differ and how they might answer more about the elusive neutrino.