71 - 80 of 2112 results

Fermilab’s Muon g-2 Experiment: Arbeiten zur Aufklärung des Standardmodells der Teilchenphysik

    From Bulgarisches Wirtschaftsblatt, Nov. 11, 2020: Während die Wissenschaftler im Fermi National Accelerator Laboratory des US-Energieministeriums auf die mit Spannung erwarteten ersten Ergebnisse des Muon g-2-Experiments warten, setzen die mitarbeitenden Wissenschaftler des Argonne National Laboratory des DOE weiterhin das einzigartige System ein, das das Magnetfeld im Experiment mit beispielloser Präzision abbildet.

    TESLA’s high-gradient march

      From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

      A dark matter detector based on a wind chime seems just weird enough to work

        From Gizmodo, Nov. 10, 2020: Fermilab and University of Maryland scientist Dan Carney and a small group of scientists have begun work on a prototype they say could one day lead to a dark matter detector capable of pinpointing the minute gravitational pull of a particle we can neither see nor feel. The detector is simple in design, but the theory behind its construction amounts to a fundamental rethinking of the search for dark matter.

        Why does the titanium alloy window become brittle after proton beam exposure?

          From Interactions.org, Nov. 9, 2020: Large-scale accelerator facilities around the world, such as Fermilab and the Japan Proton Accelerator Research Complex, send near-light-speed proton beams into pieces of material called a target. The collision produces other particles, which scientists study to learn the fundamental constituents of matter. The RaDIATE collaboration has published new results on a target material made of a titanium alloy, shedding light on how different titanium materials respond to collisions by powerful proton beams.

          Meet the kaon

            Nearly 75 years after the puzzling first detection of the kaon, scientists are still looking to the particle for hints of physics beyond their current understanding.

            Fermilab is partner in Quantum Science Center based at Oak Ridge National Laboratory

            Fermilab plays a key role in the Quantum Science Center, led by Oak Ridge National Laboratory. The center unites Oak Ridge’s powerhouse capabilities in supercomputing and materials science with Fermilab’s world-class high-energy physics instrumentation and measurement expertise and facilities. Drawing on their experience building and operating experiments in cosmology and particle physics and in quantum information science, the Fermilab team is engaging in QSC efforts to develop novel, advanced quantum technologies.

            NOvA far detector

            NOvA turns its eyes to the skies

            The NOvA experiment, best known for its measurements of neutrino oscillations using particle beams from Fermilab accelerators, has been turning its attention to measurements of cosmic phenomena. In a series of results, NOvA reports on neutrinos from supernovae, gravitational-wave events from black hole mergers, muons from cosmic rays, and its search for the elusive monopole.