From IG Último Segundo (Brazil), March 7, 2021: Fermilab researcher Marcelle Soares-Santos was included in this International Women’s Day story for her studies on dark matter and dark energy.
dark energy
From Forbes, Feb. 22, 2021: Fermilab scientist Don Lincoln explains how modern cosmology imagines our universe is an astronomical confection with three primary ingredients: ordinary matter, dark matter and dark energy.
From UChicago News, Feb. 12, 2021: Fermilab scientist Yuanyuan Zhang discusses the implications of the studies she led on intracluster light using Dark Energy Survey data, which may include a new way of measuring dark matter.
From Universe Today, Feb. 3, 2021: Recent published results from the Dark Energy Survey point to intracluster light — feeble light from rogue stars that don’t belong to a galaxy — as a potential pathway to measure dark matter. Fermilab scientist Yuanyuan Zhang contextualizes the findings.
From Super Interessante, Jan. 31, 2021: A team of researchers from Fermilab and the National Observatory in Brazil used the light of solitary stars to calculate the mass of some of the largest structures in the cosmos — galaxy clusters. In addition to taking the most detailed measurement ever published of intracluster light, the team’s new method of measurement can help further investigate dark matter.
From New Scientist, Jan. 25, 2021: The Big Bang left us the universe — and a major set of mysteries around antimatter, dark matter, dark energy, and cosmic inflation. While the Large Hadron Collider looks at what the laws of physics were like a trillionth of a second after the Big Bang, Dan Hooper, head of theoretical astrophysics at Fermilab, thinks the answers to these puzzles may depend on better understanding that first fraction of a second — even closer to the universe’s beginning.
From Department of Energy, July 6, 2020: DOE announces $132 million in funding for 64 university research awards on a range of topics in high-energy physics to advance knowledge of how the universe works at its most fundamental level. Projects include experimental work on neutrinos at Fermilab, the search for dark matter, studies of the nature of dark energy and the expansion of the universe with the Dark Energy Spectroscopic Instrument and and investigation of the Higgs boson from data collected at the Large Hadron Collider at CERN in Switzerland.
From Gizmodo, May 5, 2020: Fermilab scientist Brian Nord weighs in on the question of how automated devices, such as an autonomously operating telescope, free from human biases and complications, could find the solutions to questions about dark matter and dark energy.