MicroBooNE

21 - 30 of 49 results

Fleming collaborates in the composition of MicroBooNE music

    From Yale University, Jan. 22, 2021: For his new piece of music, “MicroBooNE,” David Ibbett, Fermilab’s first composer-in-residence, collaborated with physics professor Bonnie Fleming through a series of discussions about the science behind the experiment that inspired the composition. The neutrino-inspired piece premiered on Dec. 8, 2020, as part of the Fermilab Arts and Lectures Series.

    Tuning in to neutrinos

      From CERN Courier, July 7, 2020: A new generation of accelerator and reactor experiments is opening an era of high-precision neutrino measurements to tackle questions such as leptonic CP violation, the mass hierarchy and the possibility of a fourth “sterile” neutrino. These include the international Deep Underground Neutrino Experiment, hosted by Fermilab, and Fermilab’s NOvA and Short-Baseline Neutrino programs.

      Fermilab and the University of Bern join forces for neutrino research

        From the University of Bern, May 2020: The University of Bern and Fermilab partner on three neutrino projects aimed at a thorough study of some postulated properties of the ghostly particle: MicroBooNE, SBND and the Deep Underground Neutrino Experiment, the latter to be considered the world’s ultimate neutrino observatory.

        Heavy neutrino decay simulation

        Finding hidden neutrinos with MicroBooNE

        Scientists of the Fermilab experiment MicroBooNE have published the results of a search for a type of hidden neutrino — much heavier than Standard Model neutrinos — that could be produced by Fermilab’s accelerators. These heavy neutrinos are expected to have longer travel times to the MicroBooNE detector than the ordinary neutrinos. This search is the first of its kind performed in a liquid-argon time projection chamber, a type of particle detector. MicroBooNE scientists have used their data to publish constraints on the existence of such heavy neutrinos.

        High-resolution MicroBooNE detector provides new details in neutrino-argon interaction measurement

        Scientists on Fermilab’s MicroBooNE experiment have measured neutrino interactions on argon with unprecedented statistics and precision using data on the resultant muons — in particular, the muon’s momentum and angle. The experiment features the first liquid-argon time projection chamber with the resolution and statistics to carry out such a measurement. Researchers will use the result to improve simulations of neutrino interactions. These improvements are important for neutrino experiments in general, including the Short-Baseline Neutrino program experiments and the international Deep Underground Neutrino Experiment, both hosted by Fermilab.