Leah Hesla

Leah Hesla is a senior writer in the Fermilab Office of Communication.

The first major superconducting section of the PIP-II accelerator has come to Fermilab: the first of 23 cryomodules for the future accelerator. The cryomodules’ job is to get the lab’s powerful proton beam up and moving, sending it to higher and higher energies, approaching the speed of light. This first cryomodule also represents a successful joint effort between Argonne National Laboratory and Fermilab to design and produce a critical accelerator component for the future heart of Fermilab.

A new machine learning technology tested by Fermilab scientists and collaborators can spot specific particle signatures among an ocean of LHC data in the blink of an eye, much faster than standard methods. Sophisticated and swift, its performance gives a glimpse into the game-changing role machine learning will play in making future discoveries in particle physics as data sets get bigger and more complex.

In his doctoral thesis, Todd details a method for data analysis in a way that minimizes a source of bias in some particle physics experiments. By analyzing information from two distant detectors simultaneously rather than sequentially, he incorporated the lack of precision knowledge in both detectors. A University of Cincinnati graduate, Todd used data from Fermilab’s MINOS and MINOS+ experiments, and his analysis can be applied in other neutrino research as well.

A Fermilab group has found a way to simulate, using a quantum computer, a class of particles that had resisted typical computing methods. Their novel approach opens doors to an area previously closed off to quantum simulation in areas beyond particle physics, thanks to cross-disciplinary inspiration.

On April 17, Fermilab hosted its 12th STEM Career Expo. Roughly 1,000 high school students, parents and educators attended the event, where they had the opportunity to meet more than 150 STEM professionals from nearly 40 companies, professional associations and research centers.

This is a visual display of an ArgoNeuT event showing a long trail left behind by a high energy particle traveling through the liquid argon accompanied by small blips caused by low energy particles.

For the first time, scientists have demonstrated that low-energy neutrinos can be thoroughly identified with a liquid-argon particle detector. The results, obtained with the ArgoNeuT experiment, are promising for experiments that use liquid argon to catch neutrinos, including the upcoming Deep Underground Neutrino Experiment.