Fermilab features

271 - 280 of 601 results

DUNE prepares for data onslaught

The detector for the international Deep Underground Neutrino Experiment will collect massive amounts of data from star-born and terrestrial neutrinos. A single supernova burst could provide as much as 100 terabytes of data. A worldwide network of computers will provide the infrastructure and bandwidth to help store and analyze it. Using artificial intelligence and machine learning, scientists are writing software to mine the data – to better understand supernovae and the evolution of our universe.

Playing pool with neutrinos

Hard to believe you can play pool with neutrinos, but certain neutrino events are closer to the game than you think. These special interactions involve a neutrino — famously elusive — striking a particle inside a nucleus like a billiard ball. MINERvA scientists study the dynamics of this subatomic ricochet to learn about the neutrino that triggered the collision. Now they have measured the probability of these quasielastic interactions using Fermilab’s medium-energy neutrino beam. Such measurements are important for current and future neutrino experiments.

Giving voice to neutrinos: Fermilab guest composer David Ibbett releases neutrino-inspired video and commentary

An ensemble of soprano, strings, piano and electronics gives voice to the mysterious neutrino in David Ibbett’s latest musical work as Fermilab guest composer. Mapping the waves of neutrino oscillation onto melodies played by the strings, Ibbett sonifies a neutrino phenomenon typically represented in abstract mathematical expressions. Hear the performance and Ibbett’s comments in this four-minute video.

Serving society: Keenan Newton volunteers as Illinois incident manager

Typically, Fermilab employee Keenan Newton spends his days managing Fermilab’s main content management platforms and his nights and weekends as a volunteer firefighter. Now he’s arranged his schedule to serve the Illinois Emergency Management Agency, volunteering his personal time to help people during the current pandemic and responding to hazardous situations while based at the State Emergency Operations Center in Springfield.

The cold eyes of DUNE

When scientists begin taking data with the Deep Underground Neutrino Experiment in the mid-2020s, they’ll be able to peer 13.8 billion years into the past and address one of the biggest unanswered questions in physics: Why is there more matter than antimatter? To do this, they’ll send a beam of neutrinos on an 800-mile journey from Fermilab to Sanford Underground Research Facility in South Dakota. To detect neutrinos, researchers at several DOE national laboratories, including Fermilab, are developing integrated electronic circuitry that can operate in DUNE’s detectors — at temperatures around minus 200 degrees Celsius. They plan to submit their designs this summer.

Fermilab presents: March Magnets

Missing March Madness? Let Fermilab fill a small part of the void created in these times of social distancing and shelter-in-place. Participate in Fermilab’s sendup of the NCAA tournament: March Magnets. Learn about eight different types of magnets used in particle physics, each with an example from a project or experiment in which Fermilab is a player. Then head over to the Fermilab Twitter feed on March 30 to participate in our March Magnets playoffs.