cosmology

Scientists in Latin America recently published the first coordinated plan for the region’s research in high-energy physics, astrophysics and cosmology. Fermilab scientist Marcela Carena was part of the group that collected input for the report. Here, she weighs in its significance.

From Forbes, Feb. 10, 2021: Fermilab scientist Don Lincoln explains why there should be equal amounts of matter and antimatter in the universe. There aren’t. He discusses several current theories that try to explain the discrepancy. Better understanding this imbalance is an aim of ongoing experiments, such as DUNE, which is being built at Fermilab.

From Super Interessante, Jan. 31, 2021: A team of researchers from Fermilab and the National Observatory in Brazil used the light of solitary stars to calculate the mass of some of the largest structures in the cosmos — galaxy clusters. In addition to taking the most detailed measurement ever published of intracluster light, the team’s new method of measurement can help further investigate dark matter.

From New Scientist, Jan. 25, 2021: The Big Bang left us the universe — and a major set of mysteries around antimatter, dark matter, dark energy, and cosmic inflation. While the Large Hadron Collider looks at what the laws of physics were like a trillionth of a second after the Big Bang, Dan Hooper, head of theoretical astrophysics at Fermilab, thinks the answers to these puzzles may depend on better understanding that first fraction of a second — even closer to the universe’s beginning.