From AZoMaterials, Feb. 18, 2021: Fermilab scientist Jeff McMahon and his research team have designed a new kind of metamaterials-based antireflection coating for the silicon lenses used in cameras used to capture the cosmic microwave background.
cosmology
From Forbes, Feb. 22, 2021: Fermilab scientist Don Lincoln explains how modern cosmology imagines our universe is an astronomical confection with three primary ingredients: ordinary matter, dark matter and dark energy.
A physicist making great advances in particle detector technology, Estrada is recognized by the American Physical Society Division of Particles and Fields for his creation and development of novel applications for CCD technology that probe wide-ranging areas of particle physics, including cosmology, dark matter searches, neutrino detection and quantum imaging.
From UChicago News, Feb. 12, 2021: Fermilab scientist Yuanyuan Zhang discusses the implications of the studies she led on intracluster light using Dark Energy Survey data, which may include a new way of measuring dark matter.
From Forbes, Feb. 10, 2021: Fermilab scientist Don Lincoln explains why there should be equal amounts of matter and antimatter in the universe. There aren’t. He discusses several current theories that try to explain the discrepancy. Better understanding this imbalance is an aim of ongoing experiments, such as DUNE, which is being built at Fermilab.
From Universe Today, Feb. 3, 2021: Recent published results from the Dark Energy Survey point to intracluster light — feeble light from rogue stars that don’t belong to a galaxy — as a potential pathway to measure dark matter. Fermilab scientist Yuanyuan Zhang contextualizes the findings.
From Super Interessante, Jan. 31, 2021: A team of researchers from Fermilab and the National Observatory in Brazil used the light of solitary stars to calculate the mass of some of the largest structures in the cosmos — galaxy clusters. In addition to taking the most detailed measurement ever published of intracluster light, the team’s new method of measurement can help further investigate dark matter.
From New Scientist, Jan. 25, 2021: The Big Bang left us the universe — and a major set of mysteries around antimatter, dark matter, dark energy, and cosmic inflation. While the Large Hadron Collider looks at what the laws of physics were like a trillionth of a second after the Big Bang, Dan Hooper, head of theoretical astrophysics at Fermilab, thinks the answers to these puzzles may depend on better understanding that first fraction of a second — even closer to the universe’s beginning.