result

31 - 40 of 54 results

Cool and dry: a revolutionary method for cooling a superconducting accelerator cavity

For the first time, a team at Fermilab has cooled and operated a superconducting radio-frequency cavity — a crucial component of superconducting particle accelerators — using cryogenic refrigerators, breaking the tradition of cooling cavities by immersing them in a bath of liquid helium. The demonstration is a major breakthrough in the effort to develop lean, compact accelerators for medicine, the environment and industry.

Recycler

An interaction of slipping beams

In particle accelerators, the greater a beam’s intensity, the more opportunities there are to study particle interactions. One way to increase the intensity is to merge two beams with a technique called slip-stacking. However, when combining them, the beams’ interaction may cause instability. A Fermilab scientist has created a successful model of the fraught dynamics of two particle beams in close contact, leading to smoother sailing in this area of particle acceleration.

CSI: Neutrinos cast no shadows

The MINERvA neutrino experiment has a new crime scene investigation technique, one that takes a hard look at the traces that particles leave before fleeing the scene. Researchers used a new technique in a recent MINERvA neutrino investigation. And the new insights they gained on the workings of nuclear effects can help other neutrino experiments.

ArgoNeuT hits a home run with measurements of neutrinos in liquid argon

Scientists on the ArgoNeuT experiment have developed a method that enables them to better distinguish the tracks that particles leave behind in liquid argon, as well as a way to better differentiate between signals and background. And thanks to the software’s great performance, ArgoNeuT will aid larger neutrino experiments in their quest to understand the nature of the subtle neutrino.