SLAC

1 - 10 of 40 results

Accelerator makes cross-country trek to enable laser upgrade

    From Jefferson Lab, Nov. 20, 2020: Thomas Jefferson National Accelerator Facility has shipped the final new section of accelerator that it has built for an upgrade of the Linac Coherent Light Source. The section of accelerator, called a cryomodule, has begun a cross-country road trip to SLAC National Accelerator Laboratory, where it will be installed in LCLS-II, the world’s brightest X-ray laser. The upgraded LCLS will boast 37 cryomodules in total. Of those, 18 are from Jefferson Lab (plus three spares), and the rest will come from Fermilab.

    Dark Energy Survey census of the smallest galaxies hones the search for dark matter

    Scientists on the Dark Energy Survey have used observations of the smallest known galaxies to better understand dark matter, the mysterious substance that makes up 85% of the matter in the universe. The smallest galaxies can contain hundreds to thousands of times more dark matter than normal visible matter, making them ideal laboratories for studying this mysterious substance. By performing a rigorous census of small galaxies surrounding our Milky Way, scientists on the Dark Energy Survey have been able to constrain the fundamental particle physics that governs dark matter.

    A million pulses per second: How particle accelerators are powering X-ray lasers

    Three United States DOE national laboratories – SLAC, Fermilab and Jefferson Lab – have partnered to build an advanced particle accelerator that will power the LCLS-II X-ray laser. Thanks to technology developed for nuclear and high-energy physics, the new X-ray laser will produce a nearly continuous wave of electrons and allow scientists to peer more deeply than ever before into the building blocks of life and matter.

    A day in the life of a dark matter data wrangler

      As she grew up in the small town of San Pellegrino in the Italian Alps, three things conspired to make Maria Elena Monzani a physicist: a fascination for outer space, a Nobel Prize and a nuclear disaster. Now she prepares an international team to search for clues to one of the biggest scientific mysteries.

      A miniature camera for the Large Synoptic Survey Telescope

        Scientists at SLAC National Accelerator Laboratory are building the world’s largest digital camera for astronomy and astrophysics — a minivan-sized 3200-megapixel “eye” of the future Large Synoptic Survey Telescope that will see light in 2022. In the meantime, the lab has completed its work on a miniature version that will soon be used for testing the telescope and taking LSST’s first images of the night sky. ComCam will help test the observatory once it is installed in Chile later this year.

        Engineering the world’s largest digital camera

          In a brightly lit clean room at SLAC National Accelerator Laboratory, engineers are building a car-sized digital camera for the Large Synoptic Survey Telescope. When it’s ready, LSST will image almost all of the sky visible from its vantage point on a Chilean mountain, Cerro Pachón, every few nights for a decade to make an astronomical movie of unprecedented proportions. Building the LSST means solving extraordinary technological challenges.

          Remastered 1964 films show origins of SLAC

            A pair of 1964 films detailing the construction of Stanford Linear Accelerator Center were recently remastered and are now available for viewing on YouTube. The films provide a fascinating look back at the origins of SLAC and the history of particle physics in the United States. At the time of the production, SLAC was the largest civilian basic science project ever undertaken in the United States.