The many paths of muon math
Here’s how physicists calculate g-2, the value that will determine whether the muon is giving us a sign of new physics.
211 - 220 of 725 results
Here’s how physicists calculate g-2, the value that will determine whether the muon is giving us a sign of new physics.
A precise calibration for measurements of electric current has long eluded scientists. Last year, the ampere was redefined based on the charge of a single electron. The next generation of charge-coupled devices, known as skipper CCDs, could provide the sensitivity needed to calibrate the new definition.
Fermilab joins the global celebration of Dark Matter Day. Hear from Fermilab scientists during a special webinar on Saturday, Oct. 31, at 1 p.m. CT. Take a virtual tour of the lab’s dark matter experiments and detectors, and learn how Fermilab is helping answer questions about the mysterious stuff that makes up 25% of our universe.
Bernstein is overseeing the Fermilab Mu2e experiment as it moves from its construction to installation phase and into a running experiment. A collaboration of nearly 250 scientists at 40 institutions that had to invent technology to get to this point, Mu2e is in an exciting phase, especially for early-career researchers who will not only construct the experiment, but also analyze the data.
The red supergiant Betelgeuse is one of the best candidates for a nearby supernova in the coming decades. The star’s proximity to Earth would present a unique opportunity for studying the physics of supernovae and neutrinos. If Betelgeuse does explode, DUNE will be ready.
Next week, scientists with connections to U.S. particle physics will make their morning coffee, boot up their computers and log in to a virtual community planning meeting with over 1,500 colleagues. The four-day gathering will set the stage for a process known as Snowmass, during which scientists will develop a collective vision for the next decade of U.S. particle physics research. The Snowmass process seeks to identify the most promising questions to explore in future research.
A scientist, avid runner and Cajun food cook, Bryan Ramson is helping solve the universe’s mysteries as a member of two Fermilab-hosted neutrino experiments: NOvA and the international Deep Underground Neutrino Experiment. Eager to share the joy of science with others, Ramson is active in physics outreach in the Chicago community.
Fermilab and partners in northern Illinois have established the region as a leader in particle accelerator science and technology. Few places in the world boast such a concentrated effort in particle acceleration research, developing and building cutting-edge particle accelerators, and growing an accelerator-focused workforce.
Fermilab scientists have implemented a cloud-based machine learning framework to handle data from the CMS experiment at the Large Hadron Collider. Now they can begin to use graph neural networks to boost their pattern recognition abilities in the search for new particles.
Handedness — and the related concept of chirality — are double-sided ways of understanding how matter breaks symmetries. Different-handed object pairs reveal some puzzling asymmetries in the way our universe works.