accelerator technology

51 - 60 of 86 results

The future of particle accelerators may be autonomous

Particle accelerators are some of the most complicated machines in science. In today’s more autonomous era of self-driving cars and vacuuming robots, efforts are going strong to automate different aspects of the operation of accelerators, and the next generation of particle accelerators promises to be more automated than ever. Scientists are working on ways to run them with a diminishing amount of direction from humans.

Daniel Bafia wins first prize in student poster competition at International Particle Accelerator Conference

A Ph.D. student at the Illinois Institute of Technology conducting his research at Fermilab, Bafia is currently researching a method to draw maximum performance from acceleration cavities. The method, called nitrogen doping, increases superconducting radio-frequency cavity efficiency and boosts beams to higher energies over shorter distances. His work earned him the Best Student Poster Prize at the 2019 International Particle Accelerator Conference.

In electrospinning, a positive charge is applied to liquidized material to create thin strands that eventually harden into a solid, fibrous material. Photo: Reidar Hahn

Spinning new targets for accelerators

Fermilab scientists are preparing for future, high-power particle beams with a technological advance inspired by spinning sugar. It’s a new type of target — the material that beams collide with to produce other particles, such as neutrinos. The target is designed to be able to withstand the heat from high-intensity beams, expanding the potential of experiments that use them. Researching this new patent-pending technology already has led to a TechConnect Innovation Award and might have applications in the medical field.

Fermilab scientist awarded funding for international collaboration on accelerator automation

Scientist Jean-Paul Carneiro and collaborators in France are setting the stage for one of the world’s first autonomous particle accelerators. They will incorporate the world’s leading code for computing the dynamics of particle beams into a Fermilab prototype. Funding is provided through the FACCTS program, which fosters productive partnerships between Chicago-based and French researchers.

On Friday, March 15, Fermilab broke ground on the PIP-II accelerator project, joined by dignitaries from the United States and international partners on the project. From left: Senator Tammy Duckworth (IL), Senator Dick Durbin (IL), Rep. Sean Casten (IL-6), Rep. Robin Kelly (IL-2), Rep. Bill Foster (IL-11), Fermilab Director Nigel Lockyer, Rep. Lauren Underwood (IL-14), Illinois Governor JB Pritzker, DOE Under Secretary for Science Paul Dabbar, Fermilab PIP-II Project Director Lia Merminga, DOE Associate Director for High Energy Physics Jim Siegrist, University of Chicago President Robert Zimmer, Consul General of India Neeta Bhushan, British Consul General John Saville, Consul General of Italy Giuseppe Finocchiaro, Consul General of France Guillaume Lacroix, DOE Fermi Site Office Manager Mike Weis, DOE PIP-II Federal Project Director Adam Bihary and Consul General of Poland Piotr Janicki. Photo: Reidar Hahn

In photos: Fermilab breaks ground on PIP-II accelerator project

On March 15, Fermilab broke ground on PIP-II, a major new particle accelerator project at Fermilab. Dignitaries from the United States and international partners celebrated the start of the project at the groundbreaking ceremony. The PIP-II accelerator will power the long-term future of the laboratory’s research program, including the international Deep Underground Neutrino Experiment and a suite of on-site experiments.

Shortly after breaking ground on the PIP-II accelerator project on Friday, March 15, Fermilab employees were joined by the governor of Illinois, six members of Congress and partners from around the world in this group photo. Photo: Reidar Hahn

Fermilab, international partners break ground on new state-of-the-art particle accelerator

The March 15 ceremony marks the start of work on PIP-II, a major new accelerator project at Fermilab. The PIP-II accelerator will power the long-term future of the laboratory’s research program, including the international Deep Underground Neutrino Experiment.

Fermilab engineers and technicians stand by a magnet coil made for the High-Luminosity LHC. Photo: Reidar Hahn

Large Hadron Collider upgrade project leaps forward

The U.S. Department of Energy has approved the scope, cost and schedule for the U.S. LHC Accelerator Upgrade Project and has given the first approval for the purchase of materials. This project brings together scientists, engineers and technicians from national laboratories — such as Fermilab, Brookhaven, Berkeley, SLAC and Jefferson labs — to develop two cutting-edge technologies to advance the future of both the Large Hadron Collider and broader collider research.

Designing magnets for the world’s largest particle collider

    From IEEE Spectrum, Jan. 30, 2019: If realized, the Future Circular Collider will produce magnetic fields nearly twice as strong as the LHC and accelerate particles to unprecedented energies of 100 teraelectron volts, compared to the Large Hadron Collider’s energies of 13 TeV. Whereas the magnetic system at the LHC can achieve strengths of 8.3 teslas, the FCC system would be able to achieve 16 T.