DUNE publishes first physics results from prototype detector
Results from the ProtoDUNE single-phase detector at CERN pave the way for detectors 20 times larger for the international Deep Underground Neutrino Experiment, hosted by Fermilab.
131 - 140 of 540 results
Results from the ProtoDUNE single-phase detector at CERN pave the way for detectors 20 times larger for the international Deep Underground Neutrino Experiment, hosted by Fermilab.
From Público, Nov. 24, 2020: Homestake fue la mayor y más profunda mina de oro de de Norteamérica hasta que se cerró en 2002 tras 125 años de funcionamiento. Este remoto lugar de Dakota del Sur se convirtió oficialmente en 2007 en un laboratorio subterráneo de física fundamental, aunque ya mucho antes se habían instalado en sus profundas cavernas algunos experimentos, incluido uno que mereció el premio Nobel. Ahora se anuncia la nueva etapa para convertir la mina en sede del megaproyecto científico más importante de las últimas décadas en Estados Unidos, el Long-Baseline Neutrino Facility, dedicado a estudiar las partículas fundamentales llamadas neutrinos.
From Pesquisa, November 2020: The FAPESP scientific director shares how he encouraged behaviors that helped improve research in São Paulo. With FAPESP encouragement, researchers in Brazil have held leadership positions in international collaborations, including in a photon detection system called Arapuca. Arapuca is a technology used in Fermilab’s Short-Baseline Near Detector and a baseline technology for the international Deep Underground Neutrino Experiment, hosted by Fermilab.
David Ibbett, Fermilab’s first guest composer, converts real scientific data into musical notes and rhythms. His latest piece, “MicroBooNE,” will make its world premiere at a virtual concert on Dec. 8. In this audio interview, Ibbett shares a sneak peek of the song and explains his compositional process.
The NOvA experiment, best known for its measurements of neutrino oscillations using particle beams from Fermilab accelerators, has been turning its attention to measurements of cosmic phenomena. In a series of results, NOvA reports on neutrinos from supernovae, gravitational-wave events from black hole mergers, muons from cosmic rays, and its search for the elusive monopole.
All summer long, progress on preparing the Fermilab site for the construction of the Long-Baseline Neutrino Facility has been proceeding at a healthy clip. Now, as summer winds down, that site prep is nearing completion.
From Quanta Magazine, October 2020: This 17-minute podcast episode explores how three physicists stumbled across an unexpected relationship between some of the most ubiquitous objects in math. Hear Fermilab scientist Stephen Parke, DUNE collaborator Deborah Harris of York University, and Fields medalist Terence Tao discuss neutrinos, linear algebra, and the international, Fermilab-hosted Deep Underground Neutrino Experiment.
From Sci News, Oct. 2, 2020: A research team from four national laboratories, including Fermilab and Argonne, have undertaken work at two Fermilab neutrino experiments — MiniBooNE and NOvA — to construct a model of how neutrinos interact with atomic nuclei. This knowledge is essential to unravel an even bigger mystery: why during their journey through space or matter neutrinos magically morph from one into another of three possible types or flavors.
From Science, Oct. 2, 2020: As U.S. particle physicists start to drum up new ideas for the next decade in a yearlong Snowmass process they have no single big project to push for (or against). Physicists have just started to build the current plan’s centerpiece: The Long-Baseline Neutrino Facility at Fermilab will shoot particles through 1,300 kilometers of rock to the Deep Underground Neutrino Experiment in South Dakota. Fermilab Deputy Director of Research Joe Lykken and Fermilab scientist Vladimir Shiltsev comment on other possible pursuits in high-energy physics.
From Interesting Engineering, Oct. 4, 2020: Fermilab’s NOvA experiment is listed in this rundown of the world’s neutrino observatories.