External

861 - 870 of 2103 results

Mining company to bring 110 jobs to Lead

    From Black Hills Pioneer, Nov. 17, 2020: Thyssen Mining Company, one of North America’s largest mining companies, has signed a three-year contract to excavate space for the Long Baseline Neutrino Facility at Sanford Lab in South Dakota. The company plans to bring about 110 jobs for miners, operators, mechanics, electricians, engineers, and managers. Thyssen Mining is currently preparing office space in Lead, as well as getting personnel lined up, contracting with local vendors, and preparing equipment for the project.

    Fermilab’s Muon g-2 Experiment: Arbeiten zur Aufklärung des Standardmodells der Teilchenphysik

      From Bulgarisches Wirtschaftsblatt, Nov. 11, 2020: Während die Wissenschaftler im Fermi National Accelerator Laboratory des US-Energieministeriums auf die mit Spannung erwarteten ersten Ergebnisse des Muon g-2-Experiments warten, setzen die mitarbeitenden Wissenschaftler des Argonne National Laboratory des DOE weiterhin das einzigartige System ein, das das Magnetfeld im Experiment mit beispielloser Präzision abbildet.

      TESLA’s high-gradient march

        From CERN Courier, Nov. 10, 2020: Established 30 years ago with a linear electron-positron collider in mind, the TESLA Technology Collaboration has played a major role in the development of superconducting radio-frequency cavities and related technologies for a wide variety of applications. The first decade of the 21st century saw the TTC broaden its reach, for example, gradually opening to the community working on proton superconducting cavities, such as the half-wave resonator string collaboratively developed at Argonne National Lab and now destined for use in PIP-II at Fermilab.

        A dark matter detector based on a wind chime seems just weird enough to work

          From Gizmodo, Nov. 10, 2020: Fermilab and University of Maryland scientist Dan Carney and a small group of scientists have begun work on a prototype they say could one day lead to a dark matter detector capable of pinpointing the minute gravitational pull of a particle we can neither see nor feel. The detector is simple in design, but the theory behind its construction amounts to a fundamental rethinking of the search for dark matter.

          Why does the titanium alloy window become brittle after proton beam exposure?

            From Interactions.org, Nov. 9, 2020: Large-scale accelerator facilities around the world, such as Fermilab and the Japan Proton Accelerator Research Complex, send near-light-speed proton beams into pieces of material called a target. The collision produces other particles, which scientists study to learn the fundamental constituents of matter. The RaDIATE collaboration has published new results on a target material made of a titanium alloy, shedding light on how different titanium materials respond to collisions by powerful proton beams.

            Meet the kaon

              Nearly 75 years after the puzzling first detection of the kaon, scientists are still looking to the particle for hints of physics beyond their current understanding.